1,624 research outputs found
Quantum Communication and Computing With Atomic Ensembles Using Light-Shift Imbalance Induced Blockade
Recently, we have shown that for conditions under which the so-called
light-shift imbalance induced blockade (LSIIB) occurs, the collective
excitation of an ensemble of a multi-level atom can be treated as a closed two
level system. In this paper, we describe how such a system can be used as a
quantum bit (qubit) for quantum communication and quantum computing.
Specifically, we show how to realize a C-NOT gate using the collective qubit
and an easily accessible ring cavity, via an extension of the so-called
Pellizzari scheme. We also describe how multiple, small-scale quantum computers
realized using these qubits can be linked effectively for implementing a
quantum internet. We describe the details of the energy levels and transitions
in 87Rb atom that could be used for implementing these schemes.Comment: 16 pages, 9 figures. Accepted in Phys. Rev.
Determination of the phase of an electromagnetic field via incoherent detection of fluorescence
We show that the phase of a field can be determined by incoherent detection
of the population of one state of a two-level system if the Rabi frequency is
comparable to the Bohr frequency so that the rotating wave approximation is
inappropriate. This implies that a process employing the measurement of
population is not a square-law detector in this limit. We discuss how the
sensitivity of the degree of excitation to the phase of the field may pose
severe constraints on precise rotations of quantum bits involving low-frequency
transitions. We present a scheme for observing this effect in an atomic beam,
despite the spread in the interaction time.Comment: 4 pages, 2 fig
Hybrid Optoelectronic Correlator Architecture for Shift Invariant Target Recognition
In this paper, we present theoretical details and the underlying architecture
of a hybrid optoelectronic correlator that correlates images using Spatial
Light Modulators (SLM), detector arrays and Field Programmable Gate Array
(FPGA). The proposed architecture bypasses the need for nonlinear materials
such as photorefractive polymer films by using detectors instead, and the phase
information is yet conserved by the interference of plane waves with the
images. However, the output of such a Hybrid Opto-electronic Correlator (HOC)
has four terms: two convolution signals and two cross-correlation signals. By
implementing a phase stabilization and scanning circuit, the convolution terms
can be eliminated, so that the behavior of an HOC becomes essentially identical
to that of a conventional holographic correlator (CHC). To achieve the ultimate
speed of such a correlator, we also propose an opto-electronic chip which would
perform all the electrical processes in a parallel manner. The HOC architecture
along with the phase stabilization technique would thus be as good as a CHC,
capable of high speed image recognition in a translation invariant manner
Fast-Light in a Photorefractive Crystal for Gravitational Wave Detection
We demonstrate superluminal light propagation using two frequency multiplexed
pump beams to produce a gain doublet in a photorefractive crystal of Ce:BaTiO3.
The two gain lines are obtained by two-wave mixing between a probe field and
two individual pump fields. The angular frequencies of the pumps are
symmetrically tuned from the frequency of the probe. The frequency difference
between the pumps corresponds to the separation of the two gain lines; as it
increases, the crystal gradually converts from normal dispersion without
detuning to an anomalously dispersive medium. The time advance is measured as
0.28 sec for a pulse propagating through a medium with a 2Hz gain separation,
compared to the same pulse propagating through empty space. We also demonstrate
directly anomalous dispersion profile using a modfied experimental
configuration. Finally, we discuss how anomalous dispersion produced this way
in a faster photorefractive crystal (such as SPS: Sn2P2S6) could be employed to
enhance the sensitivity-bandwidth product of a LIGO type gravitational wave
detector augmented by a White Light Cavity.Comment: 14 pages, 5 figure
Evolution of an N-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation
The Liouville equation governing the evolution of the density matrix for an
atomic/molecular system is expressed in terms of a commutator between the
density matrix and the Hamiltonian, along with terms that account for decay and
redistribution. For finding solutions of this equation, it is convenient first
to reformulate the Liouville equation by defining a vector corresponding to the
elements of the density operator, and determining the corresponding
time-evolution matrix. For a system of N energy levels, the size of the
evolution matrix is N2xN2. When N is very large, evaluating the elements of
these matrices becomes very cumbersome. We describe a novel algorithm that can
produce the evolution matrix in an automated fashion for an arbitrary value of
N. As a non-trivial example, we apply this algorithm to a fifteen-level atomic
system used for producing optically controlled polarization rotation. We also
point out how such a code can be extended for use in an atomic system with
arbitrary number of energy levels
In-Situ absolute phase detection of a microwave field via incoherent fluorescence
Measuring the amplitude and the absolute phase of a monochromatic microwave
field at a specific point of space and time has many potential applications,
including precise qubit rotations and wavelength quantum teleportation. Here we
show how such a measurement can indeed be made using resonant atomic probes,
via detection of incoherent fluorescence induced by a laser beam. This
measurement is possible due to self-interference effects between the positive
and negative frequency components of the field. In effect, the small cluster of
atoms here act as a highly localized pick-up coil, and the fluorescence channel
acts as a transmission line.Comment: 13 pages, 5 figure
- …
