16,998 research outputs found
The IACOB project: A grid-based automatic tool for the quantitative spectroscopic analysis of O-stars
We present the IACOB grid-based automatic tool for the quantitative
spectroscopic analysis of O-stars. The tool consists of an extensive grid of
FASTWIND models, and a variety of programs implemented in IDL to handle the
observations, perform the automatic analysis, and visualize the results. The
tool provides a fast and objective way to determine the stellar parameters and
the associated uncertainties of large samples of O-type stars within a
reasonable computational time.Comment: 8 pages, 2 figures, 1 table. Proceedings of the "GREAT-ESF Stellar
Atmospheres in the Gaia Era Workshop
On-demand microwave generator of shaped single photons
We demonstrate the full functionality of a circuit that generates single
microwave photons on demand, with a wave packet that can be modulated with a
near-arbitrary shape. We achieve such a high tunability by coupling a
superconducting qubit near the end of a semi-infinite transmission line. A dc
superconducting quantum interference device shunts the line to ground and is
employed to modify the spatial dependence of the electromagnetic mode structure
in the transmission line. This control allows us to couple and decouple the
qubit from the line, shaping its emission rate on fast time scales. Our
decoupling scheme is applicable to all types of superconducting qubits and
other solid-state systems and can be generalized to multiple qubits as well as
to resonators.Comment: 10 pages, 7 figures. Published versio
Spectropolarimetric analysis of an active region filament. I. Magnetic and dynamical properties from single component inversions
The determination of the magnetic filed vector in solar filaments is possible
by interpreting the Hanle and Zeeman effects in suitable chromospheric spectral
lines like those of the He I multiplet at 10830 A. We study the vector magnetic
field of an active region filament (NOAA 12087). Spectropolarimetric data of
this active region was acquired with the GRIS instrument at the GREGOR
telescope and studied simultaneously in the chromosphere with the He I 10830 A
multiplet and in the photosphere with the Si I 10827 A line. As it is usual
from previous studies, only a single component model is used to infer the
magnetic properties of the filament. The results are put into a solar context
with the help of the Solar Dynamic Observatory images. Some results clearly
point out that a more complex inversion had to be done. Firstly, the Stokes
map of He I does not show any clear signature of the presence of the filament.
Secondly, the local azimuth map follows the same pattern than Stokes as if
the polarity of Stokes were conditioning the inference to very different
magnetic field even with similar linear polarization signals. This indication
suggests that the Stokes could be dominated by the below magnetic field
coming from the active region, and not, from the filament itself. Those and
more evidences will be analyzed in depth and a more complex inversion will be
attempted in the second part of this series.Comment: 18 pages, 19 figures, accepted for publication in A&
Mixed-integer-linear-programming-based energy management system for hybrid PV-wind-battery microgrids: Modeling, design, and experimental verification
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksMicrogrids are energy systems that aggregate distributed energy resources, loads, and power electronics devices in a stable and balanced way. They rely on energy management systems to schedule optimally the distributed energy resources. Conventionally, many scheduling problems have been solved by using complex algorithms that, even so, do not consider the operation of the distributed energy resources. This paper presents the modeling and design of a modular energy management system and its integration to a grid-connected battery-based microgrid. The scheduling model is a power generation-side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data. The operation of the microgrid is complemented with a supervisory control stage that compensates any mismatch between the offline scheduling process and the real time microgrid operation. The proposal has been tested experimentally in a hybrid microgrid at the Microgrid Research Laboratory, Aalborg University.Peer ReviewedPostprint (author's final draft
Tensorial perturbations in the bulk of inflating brane worlds
In this paper we consider the stability of some inflating brane-world models
in quantum cosmology. It is shown that whereas the singular model based on the
construction of inflating branes from Euclidean five-dimensional anti-de Sitter
space is unstable to tensorial cosmological perturbations in the bulk, the
nonsingular model which uses a five-dimensional asymptotically anti-de Sitter
wormhole to construct the inflating branes is stable to these perturbations.Comment: 4 pages, RevTex, to appear in Phys. Rev.
- …