590 research outputs found

    Amorphous interface layer in thin graphite films grown on the carbon face of SiC

    Get PDF
    Cross-sectional transmission electron microscopy (TEM) is used to characterize an amorphous layer observed at the interface in graphite and graphene films grown via thermal decomposition of C-face 4H-SiC. The amorphous layer does not to cover the entire interface, but uniform contiguous regions span microns of cross-sectional interface. Annular dark field scanning transmission electron microscopy (ADF-STEM) images and electron energy loss spectroscopy (EELS) demonstrate that the amorphous layer is a carbon-rich composition of Si/C. The amorphous layer is clearly observed in samples grown at 1600{\deg}C for a range of growth pressures in argon, but not at 1500{\deg}C, suggesting a temperature-dependent formation mechanism

    Dealing with the challenges of legitimacy, values, and politics in policy advice

    Get PDF
    Policy advice has been the subject of ongoing research in the policy sciences as it raises fundamental issues about what constitutes policy knowledge, expertise, and their effects on policymaking. This introduction reviews the existing literature on the subject and introduces the themes motivating the articles in the issue. It highlights the need to consider several key subjects in the topic in the contemporary era: namely the challenge of legitimacy, that of values, and the challenge of politics. The papers in the issue shed light on the ongoing delegitimization of conventional knowledge providers, the problem of the normative basis of experts’ advice, the increasing politicization of expertise in policymaking, and the relevance of political context in influencing not only the role of experts but also whether or not their advice is accepted and implemented. It is argued that these modern challenges, when not addressed, reinforce trends toward the inclusion of antidemocratic values and uninformed ideas in contemporary policymaking

    Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001)

    Get PDF
    Epitaxial graphene films were formed on the Si-face of semi-insulating 4H-SiC substrates by a high temperature sublimation process. A high-k gate stack on epitaxial graphene is realized by inserting a fully oxidized nanometer thin aluminum film as a seeding layer followed by an atomic-layer deposition process. The electrical properties of epitaxial graphene films are sustained after gate stack formation without significant degradation. At low temperatures, the quantum-Hall effect in Hall resistance is observed along with pronounced Shubnikov-de Hass oscillations in diagonal magneto-resistance of gated epitaxial graphene on SiC (0001).Comment: 2 new references adde

    Ab initio Study of Misfit Dislocations at the SiC/Si(001) Interface

    Full text link
    The high lattice mismatched SiC/Si(001) interface was investigated by means of combined classical and ab initio molecular dynamics. Among the several configurations analyzed, a dislocation network pinned at the interface was found to be the most efficient mechanism for strain relief. A detailed description of the dislocation core is given, and the related electronic properties are discussed for the most stable geometry: we found interface states localized in the gap that may be a source of failure of electronic devices

    Model systematics in time domain tests of binary black hole evolution

    Get PDF
    We perform several consistency tests between different phases of binary black hole dynamics; the inspiral, the merger, and the ringdown on the gravitational wave events GW150914 and GW170814. These tests are performed explicitly in the time domain, without any spectral leakage between the different phases. We compute posterior distributions on the mass and spin of the initial black holes and the final black hole. We also compute the initial areas of the two individual black holes and the final area from the parameters describing the remnant black hole. This facilitates a test of Hawking's black hole area theorem. We use different waveform models to quantify systematic waveform uncertainties for the area increase law with the two events. We find that these errors may lead to overstating the confidence with which the area theorem is confirmed. For example, we find >99%>99\% agreement with the area theorem for GW150914 if a damped sinusoid consisting of a single-mode is used at merger to estimate the final area. This is because this model overestimates the final mass. Including an overtone of the dominant mode decreases the confidence to 94%\sim94\%; using a full merger-ringdown model further decreases the confidence to 8590%\sim 85-90\%. We find that comparing the measured change in the area to the expected change in area yields a more robust test, as it also captures over estimates in the change of area. We find good agreement with GR when applying this test to GW150914 and GW170814

    A comparative DFT study of electronic properties of 2H-, 4H- and 6H-SiC(0001) and SiC(000-1) clean surfaces: Significance of the surface Stark effect

    Full text link
    Electric field, uniform within the slab, emerging due to Fermi level pinning at its both sides is analyzed using DFT simulations of the SiC surface slabs of different thickness. It is shown that for thicker slab the field is nonuniform and this fact is related to the surface state charge. Using the electron density and potential profiles it is proved that for high precision simulations it is necessary to take into account enough number of the Si-C layers. We show that using 12 diatomic layers leads to satisfactory results. It is also demonstrated that the change of the opposite side slab termination, both by different type of atoms or by their location, can be used to adjust electric field within the slab, creating a tool for simulation of surface properties, depending on the doping in the bulk of semiconductor. Using these simulations it was found that, depending on the electric field, the energy of the surface states changes in a different way than energy of the bulk states. This criterion can be used to distinguish Shockley and Tamm surface states. The electronic properties, i.e. energy and type of surface states of the three clean surfaces: 2H-, 4H-, 6H-SiC(0001), and SiC(0001ˉ000 \bar{1}) are analyzed and compared using field dependent DFT simulations.Comment: 18 pages, 10 figures, 4 table

    Posterior samples of the parameters of binary black holes from Advanced LIGO, Virgo's second observing run

    Get PDF
    This paper presents a parameter estimation analysis of the seven binary black hole mergers-GW170104, GW170608, GW170729, GW170809, GW170814, GW170818, and GW170823-detected during the second observing run of the Advanced LIGO and Virgo observatories using the gravitational-wave open data. We describe the methodology for parameter estimation of compact binaries using gravitational-wave data, and we present the posterior distributions of the inferred astrophysical parameters. We release our samples of the posterior probability density function with tutorials on using and replicating our results presented in this paper

    The effects of the ketogenic diet in refractory partial seizures with reference to tuberous sclerosis.

    Get PDF

    3-OGC: Catalog of gravitational waves from compact-binary mergers

    Get PDF
    We present the third Open Gravitational-wave Catalog (3-OGC) of compact-binary coalescences, based on the analysis of the public LIGO and Virgo data from 2015 through 2019 (O1, O2, O3a). Our updated catalog includes a population of 57 observations, including four binary black hole mergers that had not previously been reported. This consists of 55 binary black hole mergers and the two binary neutron star mergers GW170817 and GW190425. We find no additional significant binary neutron star or neutron star--black hole merger events. The most confident new detection is the binary black hole merger GW190925\_232845 which was observed by the LIGO Hanford and Virgo observatories with Pastro>0.99\mathcal{P}_{\textrm{astro}} > 0.99; its primary and secondary component masses are 20.22.5+3.9M20.2^{+3.9}_{-2.5} M_{\odot} and 15.62.6+2.1M15.6^{+2.1}_{-2.6} M_{\odot}, respectively. We estimate the parameters of all binary black hole events using an up-to-date waveform model that includes both sub-dominant harmonics and precession effects. To enable deep follow-up as our understanding of the underlying populations evolves, we make available our comprehensive catalog of events, including the sub-threshold population of candidates, and the posterior samples of our source parameter estimates

    Self-Organized Criticality model for Brain Plasticity

    Full text link
    Networks of living neurons exhibit an avalanche mode of activity, experimentally found in organotypic cultures. Here we present a model based on self-organized criticality and taking into account brain plasticity, which is able to reproduce the spectrum of electroencephalograms (EEG). The model consists in an electrical network with threshold firing and activity-dependent synapse strenghts. The system exhibits an avalanche activity power law distributed. The analysis of the power spectra of the electrical signal reproduces very robustly the power law behaviour with the exponent 0.8, experimentally measured in EEG spectra. The same value of the exponent is found on small-world lattices and for leaky neurons, indicating that universality holds for a wide class of brain models.Comment: 4 pages, 3 figure
    corecore