268 research outputs found

    Successful new product development by optimizing development process effectiveness in highly regulated sectors: the case of the Spanish medical devices sector

    Get PDF
    Rapid development and commercialization of new products is of vital importance for small and medium sized enterprises (SME) in regulated sectors. Due to strict regulations, competitive advantage can hardly be achieved through the effectiveness of product concepts only. If an SME in a highly regulated sector wants to excell in new product development (NPD) performance, the company should focus on the flexibility, speed, and productivity of its NPD function: i.e. the development process effectiveness. Our main research goals are first to explore if SMEs should focus on their their development process effectiveness rather than on their product concept effectiveness to achieve high NPD performance; and second, to explore whether a shared pattern in the organization of the NPD function can be recognized to affect NPD performance positively. The medical devices sector in Spain is used as an example of a\ud highly regulated sector. A structured survey among 11 SMEs, of which 2 were studied also as in in-depth case studies, led to the following results. First of all, indeed the companies in the dataset which focused on the effectiveness of their development process, stood out in NPD performance. Further, the higher performing companies did have a number of commonalities in the organisation of their NPD function: 1) The majority of the higher performing firms had an NPD strategy characterized by a predominantly incremental project portfolio.\ud 2) a) Successful firms with an incremental project portfolio combined this with a functional team structure b) Successful firms with a radical project portfolio combined this with a heavyweight or autonomous team structure.\ud 3) A negative reciprocal relationship exists between formalization of the NPD processes and the climate of the NPD function, in that a formalized NPD process and an innovative climate do not seem to reinforce each other. Innovative climate combined with an informal NPD process does however contribute positively to NPD performance. This effect was stronger in combination with a radical project portfolio. The highest NPD performance was measured for companies focusing mainly on incremental innovation. It is argued that in highly regulated sectors, companies with an incremental product portfolio would benefit from employing a functional structure. Those companies who choose for a more radical project portfolio in highly regulated sectors should be aware\ud that they are likely to excell only in the longer term by focusing on strategic flexibility. In their NPD organization, they might be well advised to combine informal innovation processes with an innovative climate

    Stochastic Context-Free Grammars, Regular Languages, and Newton's Method

    Get PDF
    We study the problem of computing the probability that a given stochastic context-free grammar (SCFG), G, generates a string in a given regular language L(D) (given by a DFA, D). This basic problem has a number of applications in statistical natural language processing, and it is also a key necessary step towards quantitative \omega-regular model checking of stochastic context-free processes (equivalently, 1-exit recursive Markov chains, or stateless probabilistic pushdown processes). We show that the probability that G generates a string in L(D) can be computed to within arbitrary desired precision in polynomial time (in the standard Turing model of computation), under a rather mild assumption about the SCFG, G, and with no extra assumption about D. We show that this assumption is satisfied for SCFG's whose rule probabilities are learned via the well-known inside-outside (EM) algorithm for maximum-likelihood estimation (a standard method for constructing SCFGs in statistical NLP and biological sequence analysis). Thus, for these SCFGs the algorithm always runs in P-time

    A Note on the Complexity of Comparing Succinctly Represented Integers, with an Application to Maximum Probability Parsing

    Get PDF
    The following two decision problems capture the complexity of comparing integers or rationals that are succinctly represented in product-of-exponentials notation, or equivalently, via arithmetic circuits using only multiplication and division gates, and integer inputs: Input instance: four lists of positive integers: a_1, ...., a_n ; b_1,...., b_n ; c_1,....,c_m ; d_1, ...., d_m ; where each of the integers is represented in binary. Problem 1 (equality testing): Decide whether a_1^{b_1} a_2^{b_2} .... a_n^{b_n} = c_1^{d_1} c_2^{d_2} .... c_m^{d_m} . Problem 2 (inequality testing): Decide whether a_1^{b_1} a_2^{b_2} ... a_n^{b_n} >= c_1^{d_1} c_2^{d_2} .... c_m^{d_m} . Problem 1 is easily decidable in polynomial time using a simple iterative algorithm. Problem 2 is much harder. We observe that the complexity of Problem 2 is intimately connected to deep conjectures and results in number theory. In particular, if a refined form of the ABC conjecture formulated by Baker in 1998 holds, or if the older Lang-Waldschmidt conjecture (formulated in 1978) on linear forms in logarithms holds, then Problem 2 is decidable in P-time (in the standard Turing model of computation). Moreover, it follows from the best available quantitative bounds on linear forms in logarithms, e.g., by Baker and W\"{u}stholz (1993) or Matveev (2000), that if m and n are fixed universal constants then Problem 2 is decidable in P-time (without relying on any conjectures). This latter fact was observed earlier by Shub (1993). We describe one application: P-time maximum probability parsing for arbitrary stochastic context-free grammars (where \epsilon-rules are allowed)

    Social sciences research in neglected tropical diseases 2: A bibliographic analysis

    Get PDF
    The official published version of the article can be found at the link below.Background There are strong arguments for social science and interdisciplinary research in the neglected tropical diseases. These diseases represent a rich and dynamic interplay between vector, host, and pathogen which occurs within social, physical and biological contexts. The overwhelming sense, however, is that neglected tropical diseases research is a biomedical endeavour largely excluding the social sciences. The purpose of this review is to provide a baseline for discussing the quantum and nature of the science that is being conducted, and the extent to which the social sciences are a part of that. Methods A bibliographic analysis was conducted of neglected tropical diseases related research papers published over the past 10 years in biomedical and social sciences. The analysis had textual and bibliometric facets, and focussed on chikungunya, dengue, visceral leishmaniasis, and onchocerciasis. Results There is substantial variation in the number of publications associated with each disease. The proportion of the research that is social science based appears remarkably consistent (<4%). A textual analysis, however, reveals a degree of misclassification by the abstracting service where a surprising proportion of the "social sciences" research was pure clinical research. Much of the social sciences research also tends to be "hand maiden" research focused on the implementation of biomedical solutions. Conclusion There is little evidence that scientists pay any attention to the complex social, cultural, biological, and environmental dynamic involved in human pathogenesis. There is little investigator driven social science and a poor presence of interdisciplinary science. The research needs more sophisticated funders and priority setters who are not beguiled by uncritical biomedical promises
    corecore