19,318 research outputs found

    Effect of in-plane line defects on field-tuned superconductor-insulator transition behavior in homogeneous thin film

    Full text link
    Field-tuned superconductor-insulator transition (FSIT) behavior in 2D isotropic and homogeneous thin films is usually accompanied by a nonvanishing critical resistance at low TT. It is shown that, in a 2D film including line defects paralle to each other but with random positions perpendicular to them, the (apparent) critical resistance in low TT limit vanishes, as in the 1D quantum superconducting (SC) transition, under a current parallel to the line defects. This 1D-like critical resistive behavior is more clearly seen in systems with weaker point disorder and may be useful in clarifying whether the true origin of FSIT behavior in the parent superconductor is the glass fluctuation or the quantum SC fluctuation. As a by-product of the present calculation, it is also pointed out that, in 2D films with line-like defects with a long but {\it finite} correlation length parallel to the lines, a quantum metallic behavior intervening the insulating and SC ones appears in the resistivity curves.Comment: 16 pages, 14 figure

    Theoretical Description of Resistive Behavior near a Quantum Vortex-Glass Transition

    Full text link
    Resistive behaviors at nonzero temperatures (T > 0) reflecting a quantum vortex-glass (VG) transition (the so-called field-tuned superconductor-insulator transition at T=0) are studied based on a quantum Ginzburg-Landau (GL) action for a s-wave pairing case containing microscopic details. The ordinary dissipative dynamics of the pair-field is assumed on the basis of a consistency between the fluctuation conductance terms excluded from GL approach and an observed negative magnetoresistance. It is shown that the VG contribution, G_{vg}(B=B_{vg}, T \to 0),to 2D fluctuation conductance at the VG transition field B_{vg} depends on the strength of a repulsive-interaction between electrons and takes a universal value only in the ordinary dirty limit neglecting the electron-repulsion. Available resistivity data near B_{vg} are discussed based on our results, and extensions to the cases of a d-wave pairing and of 3D systems are briefly commented on.Comment: Explanation of data in strongly disordered case, as well as Fig.2 and 3, was renewed, and comments on recent publications were added. To appear in J.Phys.Soc. Jp

    AKSZ-BV Formalism and Courant Algebroid-induced Topological Field Theories

    Get PDF
    We give a detailed exposition of the Alexandrov-Kontsevich-Schwarz- Zaboronsky superfield formalism using the language of graded manifolds. As a main illustarting example, to every Courant algebroid structure we associate canonically a three-dimensional topological sigma-model. Using the AKSZ formalism, we construct the Batalin-Vilkovisky master action for the model.Comment: 13 pages, based on lectures at Rencontres mathematiques de Glanon 200

    Microscopic Study of Quantum Vortex-Glass Transition Field in Two-Dimensional Superconductors

    Full text link
    The position of a field-tuned superconductor-insulator quantum transition occuring in disordered thin films is examined within the mean field approximation. Our calculation shows that the microscopic disorder-induced reduction of the quantum transition point found experimentally cannot be explained if the interplay between the disorder and an electron-electron repulsive interaction is ignored. This work is presented as a microscopic basis of an explanation (cond-mat/0105122) of resistive phenomena near the transition field.Comment: 16 pages, 5 figures. To appear in J.Phys.Soc.Jp

    Thermal fluctuations and disorder effects in vortex lattices

    Full text link
    We calculate using loop expansion the effect of fluctuations on the structure function and magnetization of the vortex lattice and compare it with existing MC results. In addition to renormalization of the height of the Bragg peaks of the structure function, there appears a characteristic saddle shape ''halos'' around the peaks. The effect of disorder on magnetization is also calculated. All the infrared divergencies related to soft shear cancel.Comment: 10 pages, revtex file, one figur

    Chemical potential jump between hole- and electron-doped sides of ambipolar high-Tc cuprate

    Full text link
    In order to study an intrinsic chemical potential jump between the hole- and electron-doped high-Tc superconductors, we have performed core-level X-ray photoemission spectroscopy (XPS) measurements of Y0.38La0.62Ba1.74La0.26Cu3Oy (YLBLCO), into which one can dope both holes and electrons with maintaining the same crystal structure. Unlike the case between the hole-doped system La_2-xSrxCuO4 and the electron-doped system Nd_2-xCexCuO4, we have estimated the true chemical potential jump between the hole- and electron-doped YLBLCO to be ~0.8 eV, which is much smaller than the optical gaps of 1.4-1.7 eV reported for the parent insulating compounds. We attribute the reduced jump to the indirect nature of the charge-excitation gap as well as to the polaronic nature of the doped carriers.Comment: 4 pages, 3 figure

    Evidence for realignment of the charge density wave state in ErTe3_3 and TmTe3_3 under uniaxial stress via elastocaloric and elastoresistivity measurements

    Full text link
    We report the evolution of a charge density wave (CDW) state in the quasi-2D rare-earth tritellurides (RRTe3_3 for RR=Er,Tm) as a function of in-plane uniaxial stress. Measurements of the elastocaloric effect, resistivity, and elastoresistivity allow us to demonstrate the importance of in-plane antisymmetric strain on the CDW and to establish a phase diagram. We show that modest tensile stress parallel to the in-plane aa-axis can reversibly switch the direction of the ordering wavevector between the two in-plane directions. This work establishes RRTe3_3 as a promising model system for the study of strain-CDW interactions in a quasi-2D square lattice.Comment: 18 pages, 12 figure

    Theoretical Description of Nearly Discontinuous Transition in Superconductors with Paramagnetic Depairing

    Full text link
    Based on a theoretical argument and Monte Carlo simulations of a Ginzburg-Landau model derived microscopically, it is argued that, in type-II superconductors where {\it both} the paramagnetic {\it and} orbital depairings are important, a strong first-order transition (FOT) at Hc2H_{c2} expected in the mean field (MF) approximation never occurs in real systems and changes due to the fluctuation into a crossover. The present result explains why a {\it nearly} discontinuous crossover at Hc2H_{c2} with {\it no} intrinsic hysteresis is observed only in a clean superconducting material with a singlet pairing and a high condensation energy such as CeCoIn5_5.Comment: Publication version. See cond-mat/0306060 regarding a corresponding long pape

    An Alternative Topological Field Theory of Generalized Complex Geometry

    Full text link
    We propose a new topological field theory on generalized complex geometry in two dimension using AKSZ formulation. Zucchini's model is AA model in the case that the generalized complex structuredepends on only a symplectic structure. Our new model is BB model in the case that the generalized complex structure depends on only a complex structure.Comment: 29 pages, typos and references correcte
    • …
    corecore