1,162 research outputs found
The two-dimensional two-component plasma plus background on a sphere : Exact results
An exact solution is given for a two-dimensional model of a Coulomb gas, more
general than the previously solved ones. The system is made of a uniformly
charged background, positive particles, and negative particles, on the surface
of a sphere. At the special value of the reduced inverse
temperature, the classical equilibrium statistical mechanics is worked out~:
the correlations and the grand potential are calculated. The thermodynamic
limit is taken, and as it is approached the grand potential exhibits a
finite-size correction of the expected universal form.Comment: 23 pages, Plain Te
A modern Fizeau experiment for education and outreach purposes
On the occasion of the laser's 50th anniversary, we performed a modern Fizeau
experiment, measuring the speed of light with a laser beam passing over the
city centre of Marseille. For a round trip distance of almost five kilometers,
the measurement has reached an uncertainty of about 10, mainly due to
atmospheric fluctuations. We present the experimental and pedagogical
challenges of this brilliant outreach experiment.Comment: accepted by Eur J Phys in november 201
Both Grass Development Stage and Grazing Management Influence Milk Terpene Content
Terpenes are a wide group of molecules originating from plantsâ secondary metabolism. Forage terpenes vary according to the botanical composition and in particular to the proportion of plants such as Apiaceae, Lamiaceae or Asteraceae. These molecules are considered effective milk markers for the presence of diversified forages in dairy cow diets. The variation in terpene content in the milk of grazing cows would depend on the period of development of terpene-rich plants and on the grazing management, whereby cows do or do not have the opportunity to choose and to modify the botanical composition of the ingested grass. The aim of this trial was to quantify the respective effects of grass development stage and grazing management on milk terpene content
The Ideal Conductor Limit
This paper compares two methods of statistical mechanics used to study a
classical Coulomb system S near an ideal conductor C. The first method consists
in neglecting the thermal fluctuations in the conductor C and constrains the
electric potential to be constant on it. In the second method the conductor C
is considered as a conducting Coulomb system the charge correlation length of
which goes to zero. It has been noticed in the past, in particular cases, that
the two methods yield the same results for the particle densities and
correlations in S. It is shown that this is true in general for the quantities
which depend only on the degrees of freedom of S, but that some other
quantities, especially the electric potential correlations and the stress
tensor, are different in the two approaches. In spite of this the two methods
give the same electric forces exerted on S.Comment: 19 pages, plain TeX. Submited to J. Phys. A: Math. Ge
Statistical properties of charged interfaces
We consider the equilibrium statistical properties of interfaces submitted to
competing interactions; a long-range repulsive Coulomb interaction inherent to
the charged interface and a short-range, anisotropic, attractive one due to
either elasticity or confinement. We focus on one-dimensional interfaces such
as strings. Model systems considered for applications are mainly aggregates of
solitons in polyacetylene and other charge density wave systems, domain lines
in uniaxial ferroelectrics and the stripe phase of oxides. At zero temperature,
we find a shape instability which lead, via phase transitions, to tilted
phases. Depending on the regime, elastic or confinement, the order of the
zero-temperature transition changes. Thermal fluctuations lead to a pure
Coulomb roughening of the string, in addition to the usual one, and to the
presence of angular kinks. We suggest that such instabilities might explain the
tilting of stripes in cuprate oxides. The 3D problem of the charged wall is
also analyzed. The latter experiences instabilities towards various tilted
phases separated by a tricritical point in the elastic regime. In the
confinement regime, the increase of dimensionality favors either the melting of
the wall into a Wigner crystal of its constituent charges or a strongly
inclined wall which might have been observed in nickelate oxides.Comment: 17 pages, 11 figure
Casimir force between two ideal-conductor walls revisited
The high-temperature aspects of the Casimir force between two neutral
conducting walls are studied. The mathematical model of "inert" ideal-conductor
walls, considered in the original formulations of the Casimir effect, is based
on the universal properties of the electromagnetic radiation in the vacuum
between the conductors, with zero boundary conditions for the tangential
components of the electric field on the walls. This formulation seems to be in
agreement with experiments on metallic conductors at room temperature. At high
temperatures or large distances, at least, fluctuations of the electric field
are present in the bulk and at the surface of a particle system forming the
walls, even in the high-density limit: "living" ideal conductors. This makes
the enforcement of the inert boundary conditions inadequate. Within a hierarchy
of length scales, the high-temperature Casimir force is shown to be entirely
determined by the thermal fluctuations in the conducting walls, modelled
microscopically by classical Coulomb fluids in the Debye-H\"{u}ckel regime. The
semi-classical regime, in the framework of quantum electrodynamics, is studied
in the companion letter by P.R.Buenzli and Ph.A.Martin, cond-mat/0506363,
Europhys.Lett.72, 42 (2005).Comment: 7 pages.One reference updated. Domain of validity of eq.(11)
correcte
Equation of state of a strongly magnetized hydrogen plasma
The influence of a constant uniform magnetic field on the thermodynamic
properties of a partially ionized hydrogen plasma is studied. Using the method
of Green' s function various interaction contributions to the thermodynamic
functions are calculated. The equation of state of a quantum magnetized plasma
is presented within the framework of a low density expansion up to the order
e^4 n^2 and, additionally, including ladder type contributions via the bound
states in the case of strong magnetic fields (2.35*10^{5} T << B << 2.35*10^{9}
T). We show that for high densities (n=10^{27-30} m^{-3}) and temperatures
T=10^5 - 10^6 K typical for the surface of neutron stars nonideality effects
as, e.g., Debye screening must be taken into account.Comment: 12 pages, 2 Postscript figures. uses revtex, to appear in Phys. Rev.
Correlations in a confined magnetized free-electron gas
Equilibrium quantum statistical methods are used to study the pair
correlation function for a magnetized free-electron gas in the presence of a
hard wall that is parallel to the field. With the help of a path-integral
technique and a Green function representation the modifications in the
correlation function caused by the wall are determined both for a
non-degenerate and for a completely degenerate gas. In the latter case the
asymptotic behaviour of the correlation function for large position differences
in the direction parallel to the wall and perpendicular to the field, is found
to change from Gaussian in the bulk to algebraic near the wall.Comment: 24 pages, 10 figures, submitted to J. Phys. A: Math. Ge
Correlations in two-component log-gas systems
A systematic study of the properties of particle and charge correlation
functions in the two-dimensional Coulomb gas confined to a one-dimensional
domain is undertaken. Two versions of this system are considered: one in which
the positive and negative charges are constrained to alternate in sign along
the line, and the other where there is no charge ordering constraint. Both
systems undergo a zero-density Kosterlitz-Thouless type transition as the
dimensionless coupling is varied through . In
the charge ordered system we use a perturbation technique to establish an
decay of the two-body correlations in the high temperature limit.
For , the low-fugacity expansion of the asymptotic
charge-charge correlation can be resummed to all orders in the fugacity. The
resummation leads to the Kosterlitz renormalization equations.Comment: 39 pages, 5 figures not included, Latex, to appear J. Stat. Phys.
Shortened version of abstract belo
- âŠ