1,460 research outputs found

    Atomic oxygen between 80 and 120 km: Evidence for a rapid spatial variation in vertical transport near the ionosphere

    Get PDF
    Analysis of OGO-6 OI green line photometer results was carried out for 8 cases when the alignment of the spacecraft was such that local emission rates could be determined below the altitude of maximum emission and down to about 80 km. Results show a variation on a scale of 6 deg to 8 deg in latitude between regions where the emission rate increases rapidly between 90 and 95 km and regions where it increases slowly from 80 km to 95 km. Latitude-altitude maps of iso-emissivity contours and iso-density contours for oxygen concentration are presented. The latter are computed under 3 assumptions concerning excitation mechanisms. Comparisons of the spatial variations of oxygen density with the results of a time dependent theory suggest the regions of strong downward transport alternate on a scale of about 1000 km with regions of weak transport near 90 km. In the first case conversion of O to O3 at night appears to be overwhelmed by downward transport of O

    The two-loop five-particle amplitude in N=8\mathcal{N}=8 supergravity

    Full text link
    We compute for the first time the two-loop five-particle amplitude in N=8\mathcal{N}=8 supergravity. Starting from the known integrand, we perform an integration-by-parts reduction and express the answer in terms of uniform weight master integrals. The latter are known to evaluate to non-planar pentagon functions, described by a 31-letter symbol alphabet. We express the final result for the amplitude in terms of uniform weight four symbols, multiplied by a small set of rational factors. The amplitude satisfies the expected factorization properties when one external graviton becomes soft, and when two external gravitons become collinear. We verify that the soft divergences of the amplitude exponentiate, and extract the finite remainder function. The latter depends on fewer rational factors, and is independent of one of the symbol letters. By analyzing identities involving rational factors and symbols we find a remarkably compact representation in terms of a single seed function, summed over all permutations of external particles. Finally, we work out the multi-Regge limit, and present explicitly the leading logarithmic terms in the limit. The full symbol of the IR-subtracted hard function is provided as an ancillary file.Comment: 22 pages, 1 figure, 8 ancillary file

    Spin reorientation in Na-doped BaFe2_2As2_2 studied by neutron diffraction

    Get PDF
    We have studied the magnetic ordering in Na doped BaFe2_2As2_2 by unpolarized and polarized neutron diffraction using single crystals. Unlike previously studied FeAs-based compounds that magnetically order, Ba1x_{1-x}Nax_xFe2_2As2_2 exhibits two successive magnetic transitions: For x=0.35 upon cooling magnetic order occurs at \sim70\ K with in-plane magnetic moments being arranged as in pure or Ni, Co and K-doped BaFe2_2As2_2 samples. At a temperature of \sim46\ K a second phase transition occurs, which the single-crystal neutron diffraction experiments can unambiguously identify as a spin reorientation. At low temperatures, the ordered magnetic moments in Ba0.65_{0.65}Na0.35_{0.35}Fe2_2As2_2 point along the cc direction. Magnetic correlations in these materials cannot be considered as Ising like, and spin-orbit coupling must be included in a quantitative theory.Comment: 5 pages, 4 figure

    Substances from the medicinal mushroom Daedalea gibbosa inhibit kinase activity of native and T315I mutated Bcr-Abl

    Get PDF
    Human chronic myelogenous leukemia (CML) is a malignancy of pluripotent hematopoietic cells characterized by a distinctive cytogenetic abnormality resulting in the creation of a p210 Bcr-Abl fusion protein with abnormal tyrosine kinase activity. Recently, a selective Abl kinase inhibitor, Imatinib mesylate, was introduced as a first line therapy for CML. Despite the initial response, CML patients develop a resistantance to Imatinib, which is mediated mainly by point mutations within the Abl protein. Herein, we describe the identification of mycelium organic extracts of Daedalea gibbosa with selective anti-proliferating and apoptosis-inducing activities against K562 cells and other laboratory model of CML. Using activity-guided purification, we isolated an active fraction, F6, which inhibits in vitro kinase activity of recombinant Abl. The active fraction significantly inhibits the autophosphorylation of native and mutated Bcr

    Adenosine, Ketogenic Diet and Epilepsy: The Emerging Therapeutic Relationship Between Metabolism and Brain Activity

    Get PDF
    For many years the neuromodulator adenosine has been recognized as an endogenous anticonvulsant molecule and termed a “retaliatory metabolite.” As the core molecule of ATP, adenosine forms a unique link between cell energy and neuronal excitability. In parallel, a ketogenic (high-fat, low-carbohydrate) diet is a metabolic therapy that influences neuronal activity significantly, and ketogenic diets have been used successfully to treat medically-refractory epilepsy, particularly in children, for decades. To date the key neural mechanisms underlying the success of dietary therapy are unclear, hindering development of analogous pharmacological solutions. Similarly, adenosine receptor–based therapies for epilepsy and myriad other disorders remain elusive. In this review we explore the physiological regulation of adenosine as an anticonvulsant strategy and suggest a critical role for adenosine in the success of ketogenic diet therapy for epilepsy. While the current focus is on the regulation of adenosine, ketogenic metabolism and epilepsy, the therapeutic implications extend to acute and chronic neurological disorders as diverse as brain injury, inflammatory and neuropathic pain, autism and hyperdopaminergic disorders. Emerging evidence for broad clinical relevance of the metabolic regulation of adenosine will be discussed

    Development of Feeding Cues During Infancy and Toddlerhood

    Get PDF
    To enhance responsive feeding, this study aimed to characterize the development of feeding cues during infancy and toddlerhood

    All master integrals for three-jet production at NNLO

    Full text link
    We evaluate analytically all previously unknown nonplanar master integrals for massless five-particle scattering at two loops, using the differential equations method. A canonical form of the differential equations is obtained by identifying integrals with constant leading singularities, in DD space-time dimensions. These integrals evaluate to Q\mathbb{Q}-linear combinations of multiple polylogarithms of uniform weight at each order in the expansion in the dimensional regularization parameter, and are in agreement with previous conjectures for nonplanar pentagon functions. Our results provide the complete set of two-loop Feynman integrals for any massless 232\to 3 scattering process, thereby opening up a new level of precision collider phenomenology.Comment: 6 pages, 1 figure, 5 ancillary files; v2: references added; full boundary values in s12 physical region included; v3: values of the master integrals in the ancillary files update

    Highly charged ion X-rays from Electron-Cyclotron Resonance Ion Sources

    Get PDF
    Radiation from the highly-charged ions contained in the plasma of Electron-Cyclotron Resonance Ion Sources constitutes a very bright source of X-rays. Because the ions have a relatively low kinetic energy (1\approx 1 eV) transitions can be very narrow, containing only small Doppler broadening. We describe preliminary accurate measurements of two and three-electron ions with Z=16--18. We show how these measurement can test sensitively many-body relativistic calculations or can be used as X-ray standards for precise measurements of X-ray transitions in exotic atoms

    High Resolution He-like Argon And Sulfur Spectra From The PSI ECRIT

    Full text link
    We present new results on the X-ray spectroscopy of multicharged argon, sulfur and chlorine obtained with the Electron Cyclotron Resonance Ion Trap (ECRIT) in operation at the Paul Scherrer Institut (Villigen, Switzerland). We used a Johann-type Bragg spectrometer with a spherically-bent crystal, with an energy resolution of about 0.4 eV. The ECRIT itself is of a hybrid type, with a superconducting split coil magnet, special iron inserts which provides the mirror field, and a permanent magnetic hexapole. The high frequency was provided by a 6.4 GHz microwave emitter. We obtained high intensity X-ray spectra of multicharged F-like to He-like argon, sulfur and chlorine with one 1s hole. In particular, we observed the 1s2s^{3}S_1 \to 1s^2^{1}S_0 M1 and 1s2p^{3}P_2 \to 1s^2^{1}S_0 M2 transitions in He-like argon, sulfur and chlorine with unprecedented statistics and resolution. The energies of the observed lines are being determined with good accuracy using the He-like M1 line as a reference

    Designing for comfort in shared and automated vehicles (SAV): a conceptual framework

    Get PDF
    To date, automotive design and research is heavily biased towards the driver. However, with the rapid advance of vehicle automation, the driving task will increasingly being taken over by a machine. Automation by itself, however, will not be able to tackle the transport challenges we are facing and the need for shared mobility is now widely recognized. Future mobility solutions are therefore expected to consist of Shared and Automated Vehicles (SAV). This means that the passenger experience will take center stage in the design of future road vehicles. Whereas at first sight this may not appear to be different to the experience in other modes of transport, automation and shared mobility introduce different psychological, physical and physiological challenges. These are related to the fact that the occupant is no longer in control, has to put his or her life in the hands of a computer, while at the same time expects such future vehicles to render travel time more efficient or pleasurable and engage in so-called non-driving related tasks. Taking inspiration from work conducted in the field of aircraft passenger comfort experience, we discuss major comfort factors in the context of SAV and highlight both similarities and differences between transport modes. We present a human centered design framework to assist both the research agenda and the development of safe, usable, comfortable, and desirable future mobility solutions
    corecore