13 research outputs found

    An application of linear programming to minimum fuel optimal control

    Get PDF
    Application of linear programming to minimum fuel optimal contro

    Investigation of Group A Streptococcal Interactions with Host Glycan Structures Using High-Throughput Techniques: Glycan Microarray Analysis Using Recombinant Protein and Whole Cells

    No full text
    Glycans, also known as carbohydrates, are abundant upon cell surfaces, where they often mediate host-pathogen interactions. The specific recognition of host glycans by pathogenic lectins is an important process that allows the adherence of bacteria to the host epithelial surface in many species, including Group A Streptococcus (GAS). Glycan microarrays present a sensitive, high-throughput approach for identifying novel lectin-glycan interactions and can be applied in the context of whole bacteria or purified bacterial proteins

    Investigation of Group A Streptococcal interactions with host glycan structures using high-throughput techniques: glycan microarray analysis using recombinant protein and whole cells

    No full text
    Glycans, also known as carbohydrates, are abundant upon cell surfaces, where they often mediate host-pathogen interactions. The specific recognition of host glycans by pathogenic lectins is an important process that allows the adherence of bacteria to the host epithelial surface in many species, including Group A Streptococcus (GAS). Glycan microarrays present a sensitive, high-throughput approach for identifying novel lectin-glycan interactions and can be applied in the context of whole bacteria or purified bacterial proteins

    Enhancing vector refractoriness to trypanosome infection : achievements, challenges and perspectives

    No full text
    With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013-2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP's major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.</p
    corecore