63 research outputs found
Effect of the Output of the System in Signal Detection
We analyze the consequences that the choice of the output of the system has
in the efficiency of signal detection. It is shown that the signal and the
signal-to-noise ratio (SNR), used to characterize the phenomenon of stochastic
resonance, strongly depend on the form of the output. In particular, the SNR
may be enhanced for an adequate output.Comment: 4 pages, RevTex, 6 PostScript figure
The effect of ambient temperature on gross-efficiency in cycling
Time-trial performance deteriorates in the heat. This might potentially be the result of a temperature-induced decrease in gross-efficiency (GE). The effect of high ambient temperature on GE during cycling will be studied, with the intent of determining if a heat-induced change in GE could account for the performance decrements in time trial exercise found in literature. Ten well-trained male cyclists performed 20-min cycle ergometer exercise at 60%
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document} (power output at which VO2max was attained) in a thermo-neutral climate (N) of 15.6 ± 0.3°C, 20.0 ± 10.3% RH and a hot climate (H) of 35.5 ± 0.5°C, 15.5 ± 3.2% RH. GE was calculated based on VO2 and RER. Skin temperature (Tsk), rectal temperature (Tre) and muscle temperature (Tm) (only in H) were measured. GE was 0.9% lower in H compared to N (19.6 ± 1.1% vs. 20.5 ± 1.4%) (P < 0.05). Tsk (33.4 ± 0.6°C vs. 27.7 ± 0.7°C) and Tre (37.4 ± 0.6°C vs. 37.0 ± 0.6°C) were significantly higher in H. Tm was 38.7 ± 1.1°C in H. GE was lower in heat. Tm was not high enough to make mitochondrial leakage a likely explanation for the observed reduced GE. Neither was the increased Tre. Increased skin blood flow might have had a stealing effect on muscular blood flow, and thus impacted GE. Cycling model simulations showed, that the decrease in GE could account for half of the performance decrement. GE decreased in heat to a degree that could explain at least part of the well-established performance decrements in the heat
Temporal Processing of Vibratory Communication Signals at the Level of Ascending Interneurons in Nezara viridula (Hemiptera: Pentatomidae)
During mating, males and females of N. viridula (Heteroptera: Pentatomidae) produce sex- and species-specific calling and courtship substrate-borne vibratory signals, grouped into songs. Recognition and localization of these signals are fundamental for successful mating. The recognition is mainly based on the temporal pattern, i.e. the amplitude modulation, while the frequency spectrum of the signals usually only plays a minor role. We examined the temporal selectivity for vibratory signals in four types of ascending vibratory interneurons in N. viridula. Using intracellular recording and labelling technique, we analyzed the neurons' responses to 30 pulse duration/interval duration (PD/ID) combinations. Two response arrays were created for each neuron type, showing the intensity of the responses either as time-averaged spike counts or as peak instantaneous spike rates. The mean spike rate response arrays showed preference of the neurons for short PDs (below 600 ms) and no selectivity towards interval duration; while the peak spike rate response arrays exhibited either short PD/long ID selectivity or no selectivity at all. The long PD/short ID combinations elicited the weakest responses in all neurons tested. No response arrays showed the receiver preference for either constant period or duty cycle. The vibratory song pattern selectivity matched the PD of N. viridula male vibratory signals, thus pointing to temporal filtering for the conspecific vibratory signals already at level of the ascending interneurons. In some neurons the responses elicited by the vibratory stimuli were followed by distinct, regular oscillations of the membrane potential. The distance between the oscillation peaks matched the temporal structure of the male calling song, indicating a possible resonance based mechanism for signal recognition
Perceived Object Stability Depends on Multisensory Estimates of Gravity
BACKGROUND: How does the brain estimate object stability? Objects fall over when the gravity-projected centre-of-mass lies outside the point or area of support. To estimate an object's stability visually, the brain must integrate information across the shape and compare its orientation to gravity. When observers lie on their sides, gravity is perceived as tilted toward body orientation, consistent with a representation of gravity derived from multisensory information. We exploited this to test whether vestibular and kinesthetic information affect this visual task or whether the brain estimates object stability solely from visual information. METHODOLOGY/PRINCIPAL FINDINGS: In three body orientations, participants viewed images of objects close to a table edge. We measured the critical angle at which each object appeared equally likely to fall over or right itself. Perceived gravity was measured using the subjective visual vertical. The results show that the perceived critical angle was significantly biased in the same direction as the subjective visual vertical (i.e., towards the multisensory estimate of gravity). CONCLUSIONS/SIGNIFICANCE: Our results rule out a general explanation that the brain depends solely on visual heuristics and assumptions about object stability. Instead, they suggest that multisensory estimates of gravity govern the perceived stability of objects, resulting in objects appearing more stable than they are when the head is tilted in the same direction in which they fall
Multisensory integration in spatial orientation
Contains fulltext :
76508.pdf (author's version ) (Open Access)RU Radboud Universiteit Nijmegen, 13 januari 2010Promotores : Gielen, C.C.A.M., Bekkering, H. Co-promotores : Gisbergen, J.A.M. van, Medendorp, W.P.144 p
Accuracy-precision trade-off in visual orientation constancy
Contains fulltext :
77509.pdf (publisher's version ) (Open Access)Using the subjective visual vertical task (SVV), previous investigations on the maintenance of visual orientation constancy during lateral tilt have found two opposite bias effects in different tilt ranges. The SVV typically shows accurate performance near upright but severe undercompensation at tilts beyond 60 deg (A-effect), frequently with slight overcompensation responses (E-effect) in between. Here we investigate whether a Bayesian spatial-perception model can account for this error pattern. The model interprets A- and E-effects as the drawback of a computational strategy, geared at maintaining visual stability with optimal precision at small tilt angles. In this study, we test whether these systematic errors can be seen as the consequence of a precision-accuracy trade-off when combining a veridical but noisy signal about eye orientation in space with the visual signal.To do so, we used a psychometric approach to assess both precision and accuracy of the SVV in eight subjects laterally tilted at 9 different tilt angles (−120° to 120°). Results show that SVV accuracy and precision worsened with tilt angle, according to a pattern that could be fitted quite adequately by the Bayesian model. We conclude that spatial vision essentially follows the rules of Bayes' optimal observer theory.15 p
- …