892 research outputs found

    The Gibbs Paradox and the Distinguishability of Identical Particles

    Get PDF
    Identical classical particles are distinguishable. This distinguishability affects the number of ways W a macrostate can be realized on the micro-level, and from the relation S = k ln W leads to a non-extensive expression for the entropy. This result is usually considered incorrect because of its inconsistency with thermodynamics. It is sometimes concluded from this inconsistency that identical particles are fundamentally indistinguishable after all; and even that quantum mechanics is indispensable for making sense of this. In contrast, we argue that the classical statistics of distinguishable particles and the resulting non-extensive entropy function are perfectly acceptable from both a theoretical and an experimental perspective. The inconsistency with thermodynamics can be removed by taking into account that the entropy concept in statistical mechanics is not completely identical to the thermodynamical one. We observe that even identical quantum particles are in some cases distinguishable, and conclude that quantum mechanics is irrelevant to the Gibbs paradox.Comment: 15 page

    Would You Rather Be Ill Now, or Later?

    Full text link

    Dealing with uncertain input in word learning

    No full text
    In this paper we investigate a computational model of word learning, that is embedded in a cognitively and ecologically plausible framework. Multi-modal stimuli from four different speakers form a varied source of experience. The model incorporates active learning, attention to a communicative setting and clarity of the visual scene. The model's ability to learn associations between speech utterances and visual concepts is evaluated during training to investigate the influence of active learning under conditions of uncertain input. The results show the importance of shared attention in word learning and the model's robustness against noise

    Energy Flux in the Cochlea: Evidence Against Power Amplification of the Traveling Wave

    Get PDF
    Traveling waves in the inner ear exhibit an amplitude peak that shifts with frequency. The peaking is commonly believed to rely on motile processes that amplify the wave by inserting energy. We recorded the vibrations at adjacent positions on the basilar membrane in sensitive gerbil cochleae and tested the putative power amplification in two ways. First, we determined the energy flux of the traveling wave at its peak and compared it to the acoustic power entering the ear, thereby obtaining the net cochlear power gain. For soft sounds, the energy flux at the peak was 1 ± 0.6 dB less than the middle ear input power. For more intense sounds, increasingly smaller fractions of the acoustic power actually reached the peak region. Thus, we found no net power amplification of soft sounds and a strong net attenuation of intense sounds. Second, we analyzed local wave propagation on the basilar membrane. We found that the waves slowed down abruptly when approaching their peak, causing an energy densification that quantitatively matched the amplitude peaking, similar to the growth of sea waves approaching the beach. Thus, we found no local power amplification of soft sounds and strong local attenuation of intense sounds. The most parsimonious interpretation of these findings is that cochlear sensitivity is not realized by amplifying acoustic energy, but by spatially focusing it, and that dynamic compression is realized by adjusting the amount of dissipation to sound intensity

    Observation of strongly entangled photon pairs from a nanowire quantum dot

    Get PDF
    A bright photon source that combines high-fidelity entanglement, on-demand generation, high extraction efficiency, directional and coherent emission, as well as position control at the nanoscale is required for implementing ambitious schemes in quantum information processing, such as that of a quantum repeater. Still, all of these properties have not yet been achieved in a single device. Semiconductor quantum dots embedded in nanowire waveguides potentially satisfy all of these requirements; however, although theoretically predicted, entanglement has not yet been demonstrated for a nanowire quantum dot. Here, we demonstrate a bright and coherent source of strongly entangled photon pairs from a position controlled nanowire quantum dot with a fidelity as high as 0.859 +/- 0.006 and concurrence of 0.80 +/- 0.02. The two-photon quantum state is modified via the nanowire shape. Our new nanoscale entangled photon source can be integrated at desired positions in a quantum photonic circuit, single electron devices and light emitting diodes.Comment: Article and Supplementary Information with open access published at: http://www.nature.com/ncomms/2014/141031/ncomms6298/full/ncomms6298.htm
    • …
    corecore