199 research outputs found
Blocking entry of hepatitis B and D viruses to hepatocytes as a novel immunotherapy for treating chronic infections
Background. Chronic hepatitis B and D virus (HBV/HDV) infections can cause cancer. Current HBV therapy using nucleoside analogues (NAs) is life-long and reduces but does not eliminate the risk of cancer. A hallmark of chronic hepatitis B is a dysfunctional HBV-specific T-cell response. We therefore designed an immunotherapy driven by naive healthy T cells specific for the HDV antigen (HDAg) to bypass the need for HBV-specific T cells in order to prime PreS1-specific T cells and PreS1 antibodies blocking HBV entry.
Methods. Ten combinations of PreS1 and/or HDAg sequences were evaluated for induction of PreS1 antibodies and HBV- and HDV-specific T cells in vitro and in vivo. Neutralization of HBV by PreS1-specific murine and rabbit antibodies was evaluated in cell culture, and rabbit anti-PreS1 were tested for neutralization of HBV in mice repopulated with human hepatocytes.
Results. The best vaccine candidate induced T cells to PreS1 and HDAg, and PreS1 antibodies blocking HBV entry in vitro. Importantly, adoptive transfer of PreS1 antibodies prevented, or modulated, HBV infection after a subsequent challenge in humanized mice.
Conclusions. We here describe a novel immunotherapy for chronic HBV/HDV that targets viral entry to complement NAs and coming therapies inhibiting viral maturation
A Three-Dimensional Stereotaxic MRI Brain Atlas of the Cichlid Fish Oreochromis mossambicus
The African cichlid Oreochromis mossambicus (Mozambique tilapia) has been used as a model system in a wide range of behavioural and neurobiological studies. The increasing number of genetic tools available for this species, together with the emerging interest in its use for neurobiological studies, increased the need for an accurate hodological mapping of the tilapia brain to supplement the available histological data. The goal of our study was to elaborate a three-dimensional, high-resolution digital atlas using magnetic resonance imaging, supported by Nissl staining. Resulting images were viewed and analysed in all orientations (transverse, sagittal, and horizontal) and manually labelled to reveal structures in the olfactory bulb, telencephalon, diencephalon, optic tectum, and cerebellum. This high resolution tilapia brain atlas is expected to become a very useful tool for neuroscientists using this fish model and will certainly expand their use in future studies regarding the central nervous system.Fundação para a Ciência e a Tecnologia grant: (PTDC/PSI/71811/2006); FCT PhD fellowships: (SFRH/BD/40976/2007, SFRH/BD/44848/2008); Plurianual Programme R&D: (unit MAR-LVT-Lisboa-331)
Alterations in theta-gamma coupling and sharp wave-ripple, signs of prodromal hippocampal network impairment in the TgF344-AD rat model
Alzheimer's disease (AD) is a severe neurodegenerative disorder caused by the accumulation of toxic proteins, amyloid-beta (A beta) and tau, which eventually leads to dementia. Disease-modifying therapies are still lacking, due to incomplete insights into the neuropathological mechanisms of AD. Synaptic dysfunction is known to occur before cognitive symptoms become apparent and recent studies have demonstrated that imbalanced synaptic signaling drives the progression of AD, suggesting that early synaptic dysfunction could be an interesting therapeutic target. Synaptic dysfunction results in altered oscillatory activity, which can be detected with electroencephalography and electrophysiological recordings. However, the majority of these studies have been performed at advanced stages of AD, when extensive damage and cognitive symptoms are already present. The current study aimed to investigate if the hippocampal oscillatory activity is altered at pre-plaque stages of AD. The rats received stereotactic surgery to implant a laminar electrode in the CA1 layer of the right hippocampus. Electrophysiological recordings during two consecutive days in an open field were performed in 4-5-month-old TgF344-AD rats when increased concentrations of soluble A beta species were observed in the brain, in the absence of A beta-plaques. We observed a decreased power of high theta oscillations in TgF344-AD rats compared to wild-type littermates. Sharp wave-ripple (SWR) analysis revealed an increased SWR power and a decreased duration of SWR during quiet wake in TgF344-AD rats. The alterations in properties of SWR and the increased power of fast oscillations are suggestive of neuronal hyperexcitability, as has been demonstrated to occur during presymptomatic stages of AD. In addition, decreased strength of theta-gamma coupling, an important neuronal correlate of memory encoding, was observed in the TgF344-AD rats. Theta-gamma phase amplitude coupling has been associated with memory encoding and the execution of cognitive functions. Studies have demonstrated that mild cognitive impairment patients display decreased coupling strength, similar to what is described here. The current study demonstrates altered hippocampal network activity occurring at pre-plaque stages of AD and provides insights into prodromal network dysfunction in AD. The alterations observed could aid in the detection of AD during presymptomatic stages.Radiolog
A prospective methicillin resistant staphylococcus aureus typing system for infection control : design and effectiveness
The uptake of Gadomer-17, as probed by fast dynamic T(1) measurements, was used to assess the vascular permeability surface-area product per leakage volume of tissue (k(Tofts)) of human glioma xenografts implanted in mice. With this approach we could discriminate between two types of glioma xenograft lines with a known difference in the perfused vascular architecture and degree of hypoxia. The T(1) data were analyzed according to the Tofts-Kermode compartment model. The fast-growing E102 tumor demonstrated a homogeneous distribution of the vascular permeability surface area across the tumor (mean k(Tofts) value = 0.18 +/- 0.05 min(-1)). The slowly growing E106 tumor showed a more heterogeneous pattern. Three perfused tumor areas with differences in vascular permeability surface area could be distinguished: a well-perfused periphery with high k(Tofts) values (0.24 +/- 0.04 min(-1)), perfused capillaries inside the tumor with low k(Tofts) values (0.108 +/- 0.026 min(-1)), and perfused capillaries adjacent to necrotic regions with high k(Tofts) values (0.29 +/- 0.10 min(-1)). On a different series of tumors, the hypoxic fractions were measured, and these were significantly higher in E106 tumors (0.14 +/- 0.05) compared to tumors of the E102 line (0.03 +/- 0.02)
Characterisation of tumour vasculature in mouse brain by USPIO contrast-enhanced MRI
To enhance the success rate of antiangiogenic therapies in the clinic, it is crucial to identify parameters for tumour angiogenesis that can predict response to these therapies. In brain tumours, one such parameter is vascular leakage, which is a response to tumour-derived vascular endothelial growth factor-A and can be measured by Gadolinium-DTPA (Gd-DTPA)-enhanced magnetic resonance imaging (MRI). However, as vascular permeability and angiogenesis are not strictly coupled, tumour blood volume may be another potentially important parameter. In this study, contrast-enhanced MR imaging was performed in three orthotopic mouse models for human brain tumours (angiogenic melanoma metastases and E34 and U87 human glioma xenografts) using both Gd-DTPA to detect vascular leakage and ultrasmall iron oxide particles (USPIO) to measure blood volume. Pixel-by-pixel maps of the enhancement in the transverse relaxation rates (ΔR2 and ΔR2*) after injection of USPIO provided an index proportional to the blood volume of the microvasculature and macrovasculature, respectively, for each tumour. The melanoma metastases were characterised by a blood volume and vessel leakage higher than both glioma xenografts. The U87 glioblastoma xenografts displayed higher permeability and blood volume in the rim than in the core. The E34 glioma xenografts were characterised by a relatively high blood volume, accompanied by only a moderate blood–brain barrier disruption. Delineation of the tumour was best assessed on post-USPIO gradient-echo images. These findings suggest that contrast-enhanced MR imaging using USPIOs and, in particular, ΔR2 and ΔR2* quantitation, provides important additional information about tumour vasculature
Functional MRI of Auditory Responses in the Zebra Finch Forebrain Reveals a Hierarchical Organisation Based on Signal Strength but Not Selectivity
BACKGROUND: Male songbirds learn their songs from an adult tutor when they are young. A network of brain nuclei known as the 'song system' is the likely neural substrate for sensorimotor learning and production of song, but the neural networks involved in processing the auditory feedback signals necessary for song learning and maintenance remain unknown. Determining which regions show preferential responsiveness to the bird's own song (BOS) is of great importance because neurons sensitive to self-generated vocalisations could mediate this auditory feedback process. Neurons in the song nuclei and in a secondary auditory area, the caudal medial mesopallium (CMM), show selective responses to the BOS. The aim of the present study is to investigate the emergence of BOS selectivity within the network of primary auditory sub-regions in the avian pallium. METHODS AND FINDINGS: Using blood oxygen level-dependent (BOLD) fMRI, we investigated neural responsiveness to natural and manipulated self-generated vocalisations and compared the selectivity for BOS and conspecific song in different sub-regions of the thalamo-recipient area Field L. Zebra finch males were exposed to conspecific song, BOS and to synthetic variations on BOS that differed in spectro-temporal and/or modulation phase structure. We found significant differences in the strength of BOLD responses between regions L2a, L2b and CMM, but no inter-stimuli differences within regions. In particular, we have shown that the overall signal strength to song and synthetic variations thereof was different within two sub-regions of Field L2: zone L2a was significantly more activated compared to the adjacent sub-region L2b. CONCLUSIONS: Based on our results we suggest that unlike nuclei in the song system, sub-regions in the primary auditory pallium do not show selectivity for the BOS, but appear to show different levels of activity with exposure to any sound according to their place in the auditory processing stream
Prognostic Impact of Prolonged Cross-Clamp Time in Coronary Artery Bypass Grafting
BACKGROUND:The prognostic impact of cross-clamp time (XCT) in patients undergoing isolated coronary artery bypass grafting (CABG) has not been thoroughly investigated.MATERIAL AND METHODS:2957 patients who underwent on-pump isolated CABG from the prospective multicentre E-CABG study were the subjects of this analysis.RESULTS:The mean XCT in this series was 58±25minutes Cross-clamp time was >60 minutes in 1134 patients (38.3%), >75minutes in 619 patients (20.9%) and >90minutes in 296 patients (10.0%). Multivariate analysis showed that XCT was an independent predictor of 30-day mortality (p75minutes (2.9% vs. 1.7%, p=0.002, OR 3.479, 95%CI 1.609-7.520). Analysis of 428 propensity score matched pairs showed that XCT >75minutes was associated with significantly increased risk of early mortality, prolonged use of inotropes, postoperative use of intra-aortic balloon pump, use of extracorporeal membrane oxygenation, atrial fibrillation, prolonged stay in the intensive care unit and of composite major adverse events.CONCLUSIONS:Isolated CABG is currently performed with prolonged XCT in a significant number of patients and this seems to be a determinant of poor early outcome.</p
Functional Connectivity fMRI of the Rodent Brain: Comparison of Functional Connectivity Networks in Rat and Mouse
At present, resting state functional MRI (rsfMRI) is increasingly used in human neuropathological research. The present study aims at implementing rsfMRI in mice, a species that holds the widest variety of neurological disease models. Moreover, by acquiring rsfMRI data with a comparable protocol for anesthesia, scanning and analysis, in both rats and mice we were able to compare findings obtained in both species. The outcome of rsfMRI is different for rats and mice and depends strongly on the applied number of components in the Independent Component Analysis (ICA). The most important difference was the appearance of unilateral cortical components for the mouse resting state data compared to bilateral rat cortical networks. Furthermore, a higher number of components was needed for the ICA analysis to separate different cortical regions in mice as compared to rats
ECMO for COVID-19 patients in Europe and Israel
Since March 15th, 2020, 177 centres from Europe and Israel have joined the study, routinely reporting on the ECMO support they provide to COVID-19 patients. The mean annual number of cases treated with ECMO in the participating centres before the pandemic (2019) was 55. The number of COVID-19 patients has increased rapidly each week reaching 1531 treated patients as of September 14th. The greatest number of cases has been reported from France (n = 385), UK (n = 193), Germany (n = 176), Spain (n = 166), and Italy (n = 136) .The mean age of treated patients was 52.6 years (range 16–80), 79% were male. The ECMO configuration used was VV in 91% of cases, VA in 5% and other in 4%. The mean PaO2 before ECMO implantation was 65 mmHg. The mean duration of ECMO support thus far has been 18 days and the mean ICU length of stay of these patients was 33 days. As of the 14th September, overall 841 patients have been weaned from ECMO
support, 601 died during ECMO support, 71 died after withdrawal of ECMO, 79 are still receiving ECMO support and for 10 patients status n.a. . Our preliminary data suggest that patients placed
on ECMO with severe refractory respiratory or cardiac failure secondary to COVID-19 have a reasonable (55%) chance of survival. Further extensive data analysis is expected to provide invaluable information on the demographics, severity of illness, indications and different ECMO management strategies in these patients
- …