45 research outputs found

    An ε -Uniform Numerical Method for a System of Convection-Diffusion Equations with Discontinuous Convection Coefficients and Source Terms

    Get PDF
    In this paper, a parameter-uniform numerical method is suggested to solve a system of singularly perturbed convection-diffusion equations with discontinuous convection coefficients and source terms subject to the Dirichlet boundary condition. The second derivative of each equation is multiplied by a distinctly small parameter, which leads to an overlap and interacting interior layer. A numerical method based on a piecewise uniform Shishkin mesh is constructed. Numerical results are presented to support the theoretical results

    CLIP goes 3D: Leveraging Prompt Tuning for Language Grounded 3D Recognition

    Full text link
    Vision-Language models like CLIP have been widely adopted for various tasks due to their impressive zero-shot capabilities. However, CLIP is not suitable for extracting 3D geometric features as it was trained on only images and text by natural language supervision. We work on addressing this limitation and propose a new framework termed CG3D (CLIP Goes 3D) where a 3D encoder is learned to exhibit zero-shot capabilities. CG3D is trained using triplets of pointclouds, corresponding rendered 2D images, and texts using natural language supervision. To align the features in a multimodal embedding space, we utilize contrastive loss on 3D features obtained from the 3D encoder, as well as visual and text features extracted from CLIP. We note that the natural images used to train CLIP and the rendered 2D images in CG3D have a distribution shift. Attempting to train the visual and text encoder to account for this shift results in catastrophic forgetting and a notable decrease in performance. To solve this, we employ prompt tuning and introduce trainable parameters in the input space to shift CLIP towards the 3D pre-training dataset utilized in CG3D. We extensively test our pre-trained CG3D framework and demonstrate its impressive capabilities in zero-shot, open scene understanding, and retrieval tasks. Further, it also serves as strong starting weights for fine-tuning in downstream 3D recognition tasks.Comment: Website: https://jeya-maria-jose.github.io/cg3d-web

    TransWeather: Transformer-based Restoration of Images Degraded by Adverse Weather Conditions

    Full text link
    Removing adverse weather conditions like rain, fog, and snow from images is an important problem in many applications. Most methods proposed in the literature have been designed to deal with just removing one type of degradation. Recently, a CNN-based method using neural architecture search (All-in-One) was proposed to remove all the weather conditions at once. However, it has a large number of parameters as it uses multiple encoders to cater to each weather removal task and still has scope for improvement in its performance. In this work, we focus on developing an efficient solution for the all adverse weather removal problem. To this end, we propose TransWeather, a transformer-based end-to-end model with just a single encoder and a decoder that can restore an image degraded by any weather condition. Specifically, we utilize a novel transformer encoder using intra-patch transformer blocks to enhance attention inside the patches to effectively remove smaller weather degradations. We also introduce a transformer decoder with learnable weather type embeddings to adjust to the weather degradation at hand. TransWeather achieves improvements across multiple test datasets over both All-in-One network as well as methods fine-tuned for specific tasks. TransWeather is also validated on real world test images and found to be more effective than previous methods. Implementation code can be accessed at https://github.com/jeya-maria-jose/TransWeather .Comment: CVPR 202

    Ambiguous Medical Image Segmentation using Diffusion Models

    Full text link
    Collective insights from a group of experts have always proven to outperform an individual's best diagnostic for clinical tasks. For the task of medical image segmentation, existing research on AI-based alternatives focuses more on developing models that can imitate the best individual rather than harnessing the power of expert groups. In this paper, we introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights. Our proposed model generates a distribution of segmentation masks by leveraging the inherent stochastic sampling process of diffusion using only minimal additional learning. We demonstrate on three different medical image modalities- CT, ultrasound, and MRI that our model is capable of producing several possible variants while capturing the frequencies of their occurrences. Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks in terms of accuracy while preserving naturally occurring variation. We also propose a new metric to evaluate the diversity as well as the accuracy of segmentation predictions that aligns with the interest of clinical practice of collective insights
    corecore