1,157 research outputs found

    Phase coexistence and resistivity near the ferromagnetic transition of manganites

    Get PDF
    Pairing of oxygen holes into heavy bipolarons in the paramagnetic phase and their magnetic pair-breaking in the ferromagnetic phase [the so-called current-carrier density collapse (CCDC)] has accounted for the first-order ferromagnetic phase transition, colossal magnetoresistance (CMR), isotope effect, and pseudogap in doped manganites. Here we propose an explanation of the phase coexistence and describe the magnetization and resistivity of manganites near the ferromagnetic transition in the framework of CCDC. The present quantitative description of resistivity is obtained without any fitting parameters by using the experimental resistivities far away from the transition and the experimental magnetization, and essentially model independent.Comment: 10 pages, 3 figure

    Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy

    Full text link
    Using time-domain Terahertz spectroscopy we performed direct studies of the photoinduced suppression and recovery of the superconducting gap in a conventional BCS superconductor NbN. Both processes are found to be strongly temperature and excitation density dependent. The analysis of the data with the established phenomenological Rothwarf-Taylor model enabled us to determine the bare quasiparticle recombination rate, the Cooper pair-breaking rate and the electron-phonon coupling constant, \lambda = 1.1 +/- 0.1, which is in excellent agreement with theoretical estimates.Comment: 4 pages, 4 figures; final version, accepted for publication in Phys. Rev. Let

    Electron relaxation in metals: Theory and exact analytical solutions

    Get PDF
    The non-equilibrium dynamics of electrons is of a great experimental and theoretical value providing important microscopic parameters of the Coulomb and electron-phonon interactions in metals and other cold plasmas. Because of the mathematical complexity of collision integrals theories of electron relaxation often rely on the assumption that electrons are in a "quasi-equilibrium" (QE) with a time-dependent temperature, or on the numerical integration of the time-dependent Boltzmann equation. We transform the integral Boltzmann equation to a partial differential Schroedinger-like equation with imaginary time in a one-dimensional "coordinate" space reciprocal to energy which allows for exact analytical solutions in both cases of electron-electron and electron-phonon relaxation. The exact relaxation rates are compared with the QE relaxation rates at high and low temperatures.Comment: Citation list has been extended. The paper is submitted to the Physical Review

    Combination quantum oscillations in canonical single-band Fermi liquids

    Get PDF
    Chemical potential oscillations mix individual-band frequencies of the de Haas-van Alphen (dHvA) and Shubnikov-de Haas (SdH) magneto-oscillations in canonical low-dimensional multi-band Fermi liquids. We predict a similar mixing in canonical single-band Fermi liquids, which Fermi-surfaces have two or more extremal cross-sections. Combination harmonics are analysed using a single-band almost two-dimensional energy spectrum. We outline some experimental conditions allowing for resolution of combination harmonics

    Photoinduced melting of superconductivity in the high-Tc superconductor La2-xSrxCuO4 probed by time-resolved optical and THz techniques

    Full text link
    Dynamics of depletion and recovery of superconducting state in La2-xSrxCuO_4 thin films is investigated utilizing optical pump-probe and optical pump - THz probe techniques as a function of temperature and excitation fluence. The absorbed energy density required to suppress superconductivity is found to be about 8 times higher than the thermodynamically determined condensation energy density and nearly temperature independent between 4 and 25 K. These findings indicate that during the time when superconducting state suppression takes place (~0.7 ps), a large part (nearly 90%) of the energy is transferred to the phonons with energy lower than twice the maximum value of of the SC gap and only 10% is spent on Cooper pair breaking.Comment: 8 pages, 5 figure

    Hopping magneto-transport via nonzero orbital momentum states and organic magnetoresistance

    Full text link
    In hopping magnetoresistance of doped insulators, an applied magnetic field shrinks the electron (hole) s-wave function of a donor or an acceptor and this reduces the overlap between hopping sites resulting in the positive magnetoresistance quadratic in a weak magnetic field, B. We extend the theory of hopping magnetoresistance to states with nonzero orbital momenta. Different from s-states, a weak magnetic field expands the electron (hole) wave functions with positive magnetic quantum numbers, m > 0, and shrinks the states with negative m in a wide region outside the point defect. This together with a magnetic-field dependence of injection/ionization rates results in a negative weak-field magnetoresistance, which is linear in B when the orbital degeneracy is lifted. The theory provides a possible explanation of a large low-field magnetoresistance in disordered pi-conjugated organic materials (OMAR).Comment: 4 pages, 3 figure

    Relaxation Dynamics of Photoinduced Changes in the Superfluid Weight of High-Tc Superconductors

    Get PDF
    In the transient state of d-wave superconductors, we investigate the temporal variation of photoinduced changes in the superfluid weight. We derive the formula that relates the nonlinear response function to the nonequilibrium distribution function. The latter qunatity is obtained by solving the kinetic equation with the electron-electron and the electron-phonon interaction included. By numerical calculations, a nonexponential decay is found at low temperatures in contrast to the usual exponential decay at high temperatures. The nonexponential decay originates from the nonmonotonous temporal variation of the nonequilibrium distribution function at low energies. The main physical process that causes this behavior is not the recombination of quasiparticles as previous phenomenological studies suggested, but the absorption of phonons.Comment: 18 pages, 12 figures; to be published in J. Phys. Soc. Jpn. Vol. 80, No.

    Dynamics of broken symmetry nodal and anti-nodal excitations in Bi_{2} Sr_{2} CaCu_{2} O_{8+\delta} probed by polarized femtosecond spectroscopy

    Get PDF
    The dynamics of excitations with different symmetry is investigated in the superconducting (SC) and normal state of the high-temperature superconductor Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} (Bi2212) using optical pump-probe (Pp) experiments with different light polarizations at different doping levels. The observation of distinct selection rules for SC excitations, present in A1g_{{\rm 1g}} and B1g_{{\rm 1g}} symmetries, and for the PG excitations, present in A1g_{{\rm 1g}} and B2g_{{\rm 2g}} symmetries, by the probe and absence of any dependence on the pump beam polarization leads to the unequivocal conclusion of the existence of a spontaneous spatial symmetry breaking in the pseudogap (PG) state
    corecore