35 research outputs found

    Slip distribution and stress changes associated with the 1999 November 12, Duzce (Turkey) earthquake (M (w)=7.1)

    Get PDF
    The 1999 November 12 Duzce earthquake (M (w) = 7.1) was apparently the eastward extension of the August 17, Izmit earthquake (M (w) = 7.4). The Duzce event caused heavy damage and fatalities in the cities of Duzce and Bolu. Here a finite-fault inversion method with five discrete time windows is applied to derive the co-seismic slip distribution of the Duzce earthquake. The fault plane is best modelled as a 40 x 20 km(2) plane, with a strike of 262degrees and a dip of 65degrees to the north, and that the majority of slip occurred in two distinct patches on either side of the hypocentre, implying bilateral rupture. The possible triggering of this event by the Izmit earthquake is investigated using Coulomb stress modelling of all large events since 1943 with the inclusion of secular loading. The results show that although the Duzce rupture plane was in a stress shadow prior to the Izmit earthquake, that event caused a significant Coulomb stress load, taking the Duzce fault out of the stress shadow, which probably precipitated failure. A comparison of the mapped Coulomb stress change with the inferred slip shows no correlation between the two. Finally, the stress modelling indicates that the northern branch of the North Anatolian fault zone, beneath the Sea of Marmara towards the city of Istanbul, is presently the most highly loaded segment of the North Anatolian Fault Zone

    New constraints on micro-seismicity and stress state in the western part of the North Anatolian Fault Zone : Observations from a dense seismic array

    Get PDF
    Major funding was provided by the UK Natural Environment Research Council (NERC) under grant NE/I028017/1 and partially supported by Boğaziçi University Research Fund (BAP) under grant 6922. We would like to thank all the project members from the University of Leeds, Boğaziçi University, Kandilli Observatory, Aberdeen University and Sakarya University. I would also like to thank Prof. Ali Pinar and Dr. Kıvanç Kekovalı for their valuable comments. Some of the figures were generated by GMT software (Wessel and Smith, 1995).Peer reviewedPostprin

    Coulomb static stress changes before and after the 23 October 2011 Van, eastern Turkey, earthquake (<i>M</i><sub>W</sub>= 7.1): implications for the earthquake hazard mitigation

    Get PDF
    Coulomb stress changes before and after the 23 October 2011 Van, eastern Turkey, earthquake have been analysed using available data related to the background and the aftershock seismicity and the source faults. The coseismic stress changes of the background seismicity had slightly promoted stress over the rupture plane of the 2011 Van earthquake, while it yielded a stress shadow over the Gürpı nar Fault which has been argued to have produced the 7 April 1646 Van earthquake. The stress shadow over the Gürpi nar fault has become more pronounced following the occurrence of the 2011 Van earthquake, meaning that the repetition of the 1646 Van earthquake has been further suppressed. Spatial distribution and source mechanisms of the 2011 Van earthquake's aftershocks have been utilised to define four clusters with regard to their relative location to the mainshock rupture. In addition, the aftershock sequence covers a much broader area toward the northeast. Correlations between the observed spatial patterns of the aftershocks and the coseismic Coulomb stress changes caused by the mainshock are determined by calculating the stress changes over both optimally oriented and specified fault planes. It is shown here that there is an apparent correlation between the mainshock stress changes and the observed spatial pattern of the aftershock occurrence, demonstrating the usefulness of the stress maps in constraining the likely locations of the upcoming aftershocks and mitigating earthquake hazard

    Structure of the northwestern North Anatolian Fault Zone imaged via teleseismic scattering tomography

    Get PDF
    Information on fault zone structure is essential for our understanding of earthquake mechanics, continental deformation and seismic hazard. We use the scattered seismic wavefield to study the subsurface structure of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 İzmit and Düzce ruptures using data from an 18-month dense deployment of seismometers with a nominal station spacing of 7 km. Using the forward- and back-scattered energy that follows the direct P-wave arrival from teleseismic earthquakes, we apply a scattered wave inversion approach and are able to resolve changes in lithospheric structure on a scale of 10 km or less in an area of about 130 km by 100 km across the NAFZ. We find several crustal interfaces that are laterally incoherent beneath the surface strands of the NAFZ and evidence for contrasting crustal structures either side of the NAFZ, consistent with the presence of juxtaposed crustal blocks and ancient suture zones. Although the two strands of the NAFZ in the study region strike roughly east–west, we detect strong variations in structure both north–south, across boundaries of the major blocks, and east–west, parallel to the strike of the NAFZ. The surface expression of the two strands of the NAFZ is coincident with changes on main interfaces and interface terminations throughout the crust and into the upper mantle in the tomographic sections. We show that a dense passive network of seismometers is able to capture information from the scattered seismic wavefield and, using a tomographic approach, to resolve the fine scale structure of crust and lithospheric mantle even in geologically complex regions. Our results show that major shear zones exist beneath the NAFZ throughout the crust and into the lithospheric mantle, suggesting a strong coupling of strain at these depths

    Monitoraggio in area sismica di beni monumentali: tecniche NDT e procedure di verifica

    Get PDF
    Negli ultimi anni il concetto di vulnerabilità sismica è tristemente entrato a far parte delle conoscenze anche dei non addetti ai lavori. Infatti, gli eventi sismici che hanno interessato dagli inizi del ‘900 il territorio Italiano, hanno sistematicamente messo in risalto l’elevata vulnerabilità sismica del nostro patrimonio edilizio, ivi compresi i beni monumentali, nonché, l’inesistenza di qualsiasi attività di programmazione della manutenzione periodica ordinaria e straordinaria delle strutture sismo-resistenti, che garantiscono nel tempo la conservazione delle loro capacità di risposta alle perturbazioni esterne.Il progetto PON sul Monitoraggio in Area Sismica di SIstemi MOnumentali nasce con la prerogativa di produrre uno strumento dedicato alla tutela di strutture a valenza storico – artistica, attraverso un percorso di catalogazione, di analisi del bene inteso come elemento costituito da elementi resistenti e da materiali, di studio del sito dove la struttura è ubicata e di attività di monitoraggio

    Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East : vertical peak ground acceleration and spectral acceleration

    Get PDF
    This article presents equations for the estimation of vertical strong ground motions caused by shallow crustal earthquakes with magnitudes M w 5 and distance to the surface projection of the fault less than 100km. These equations were derived by weighted regression analysis, used to remove observed magnitude-dependent variance, on a set of 595 strong-motion records recorded in Europe and the Middle East. Coefficients are included to model the effect of local site effects and faulting mechanism on the observed ground motions. The equations include coefficients to model the observed magnitude-dependent decay rate. The main findings of this study are that: short-period ground motions from small and moderate magnitude earthquakes decay faster than the commonly assumed 1/r, the average effect of differing faulting mechanisms is similar to that observed for horizontal motions and is not large and corresponds to factors between 0.7 (normal and odd) and 1.4 (thrust) with respect to strike-slip motions and that the average long-period amplification caused by soft soil deposits is about 2.1 over those on rock sites

    A detailed source study of the Orta (Cankiri) earthquake of June 6, 2000 (M-S=6.1): An intraplate earthquake in central Anatolia

    No full text
    The devastating. Izmit and Duzce earthquakes were followed by the Orta intra-plate earthquake (M-S = 6.1) occurred in the central Anatolian block on June 6, 2000. The focal mechanism, aftershock distribution and the field studies (Emre et al., 2000) suggest a movement on a 21-km long Dodurga fault striking nearly N-S where the sense of motion is left-lateral strike-slip with considerable amount of normal component. We applied the constrained linear finite-fault inversion method of Hartzell and Heaton (1983) to the teleseismic P and SH waveforms to derive a coseismic slip distribution model for the earthquake. Time windows approach is applied allowing variable rise times and rupture velocities. The source-rise time function is discretized into consecutive time intervals that stand for slip contribution of individual subfaults. Although no clear surface ruptures were associated with the earthquake, the resulting slip model suggests coseismic slip in the order of several tens of centimetres. Our coseismic slip distribution model identifies two slip patches with the following maximum slip values: (1) the larger one (42 cm) is located to the south of the hypocenter at depth range of 4-8 km and (2) the smaller one (31 cm) is located just above and north of the hypocenter. The slip-model yield a seismic moment of 1.0 x 10(18) Nm, most of which is released from the rupture over the depth of 8 km
    corecore