245 research outputs found

    Quantitative importance of staminodes for female reproductive success in Parnassia palustris under contrasting environmental conditions.

    Get PDF
    Copyright NRC PressThe five sterile stamens, or staminodes, in Parnassia palustris act both as false and as true nectaries. They attract pollinators with their conspicuous, but non-rewarding tips, and also produce nectar at the base. We removed staminodes experimentally and compared pollinator visitation rate and duration and seed set in flowers with and without staminodes in two different populations. We also examined the relative importance of the staminode size to other plant traits. Finally, we bagged, emasculated, and supplementary cross-pollinated flowers to determine the pollination strategy and whether reproduction was limited by pollen availability. Flowers in both populations were highly dependent on pollinator visitation for maximum seed set. In one population pollinators primarily cross-pollinated flowers, whereas in the other the pollinators facilitated self-pollination. The staminodes caused increased pollinator visitation rate and duration to flowers in both populations. The staminodes increased female reproductive success, but only when pollen availability constrained female reproduction. Simple linear regression indicated a strong selection on staminode size, multiple regression suggested that selection on staminode size was mainly caused by correlation with other traits that affected female fitness. [ABSTRACT FROM AUTHOR

    Phonon drag in ballistic quantum wires

    Full text link
    The acoustic phonon-mediated drag-contribution to the drag current created in the ballistic transport regime in a one-dimensional nanowire by phonons generated by a current-carrying ballistic channel in a nearby nanowire is calculated. The threshold of the phonon-mediated drag current with respect to bias or gate voltage is predicted.Comment: 5 pages, 2 figure

    Quantitative importance of staminodes for female reproductive success in Parnassia palustris under contrasting environmental conditions.

    Get PDF
    The five sterile stamens, or staminodes, in Parnassia palustris act both as false and as true nectaries. They attract pollinators with their conspicuous, but non-rewarding tips, and also produce nectar at the base. We removed staminodes experimentally and compared pollinator visitation rate and duration and seed set in flowers with and without staminodes in two different populations. We also examined the relative importance of the staminode size to other plant traits. Finally, we bagged, emasculated, and supplementary cross-pollinated flowers to determine the pollination strategy and whether reproduction was limited by pollen availability. Flowers in both populations were highly dependent on pollinator visitation for maximum seed set. In one population pollinators primarily cross-pollinated flowers, whereas in the other the pollinators facilitated self-pollination. The staminodes caused increased pollinator visitation rate and duration to flowers in both populations. The staminodes increased female reproductive success, but only when pollen availability constrained female reproduction. Simple linear regression indicated a strong selection on staminode size, multiple regression suggested that selection on staminode size was mainly caused by correlation with other traits that affected female fitness. [ABSTRACT FROM AUTHOR

    Non-adiabaticity and single-electron transport driven by surface acoustic waves

    Full text link
    Single-electron transport driven by surface acoustic waves (SAW) through a narrow constriction, formed in two-dimensional electron gas, is studied theoretically. Due to long-range Coulomb interaction, the tunneling coupling between the electron gas and the moving minimum of the SAW-induced potential rapidly decays with time. As a result, nonadiabaticiy sets a limit for the accuracy of the quantization of acoustoelectric current

    Acoustoelectric current and pumping in a ballistic quantum point contact

    Full text link
    The acoustoelectric current induced by a surface acoustic wave (SAW) in a ballistic quantum point contact is considered using a quantum approach. We find that the current is of the "pumping" type and is not related to drag, i.e. to the momentum transfer from the wave to the electron gas. At gate voltages corresponding to the plateaus of the quantized conductance the current is small. It is peaked at the conductance step voltages. The peak current oscillates and decays with increasing SAW wavenumber for short wavelengths. These results contradict previous calculations, based on the classical Boltzmann equation.Comment: 4 pages, 1 figur

    Acoustoelectric pumping through a ballistic point contact in the presence of magnetic fields

    Full text link
    The acoustoelectric current, J, induced in a ballistic point contact (PC) by a surface acoustic wave is calculated in the presence of a perpendicular magnetic field, B. It is found that the dependence of the current on the Fermi energy in the terminals is strongly correlated with that of the PC conductance: J is small at the conductance plateaus, and is large at the steps. Like the conductance, the acoustoelectric current has the same functional behavior as in the absence of the field, but with renormalized energy scales, which depend on the strength of the magnetic field, | B|.Comment: 7 page

    Giant Oscillations of Acoustoelectric Current in a Quantum Channel

    Full text link
    A theory of d.c. electric current induced in a quantum channel by a propagating surface acoustic wave (acoustoelectric current) is worked out. The first observation of the acoustoelectric current in such a situation was reported by J. M. Shilton et al., Journ. Phys. C (to be published). The authors observed a very specific behavior of the acoustoelectric current in a quasi-one-dimensional channel defined in a GaAs-AlGaAs heterostructure by a split-gate depletion -- giant oscillations as a function of the gate voltage. Such a behavior was qualitatively explained by an interplay between the energy-momentum conservation law for the electrons in the upper transverse mode with a finite temperature splitting of the Fermi level. In the present paper, a more detailed theory is developed, and important limiting cases are considered.Comment: 7 pages, 2 Postscript figures, RevTeX 3.

    Acoustoelectric effects in quantum constrictions

    Full text link
    A dc current induced in a quantum constriction by a traveling acoustic wave (or by non-equilibrium ballistic phonons) is considered. We show that in many important situations the effect is originated from acoustically-induced scattering between the propagating and reflecting states in the constriction. Two particular regimes corresponding to relatively high and low acoustic frequencies are discussed. In the first regime, the acoustoelectric effect in a smooth constriction can be understood by semi-classical considerations based on local conservation laws. For the low frequency regime, we show that the acousto-conductance is closely related to the zero field conductance. The qualitative considerations are confirmed by numerical calculations both for smooth and abrupt channels.Comment: 10 pages, RevTeX, 9 postscript figures, submitted to Phys. Rev.

    Reproductive Ecology and Severe Pollen Limitation in the Polychromic Tundra Plant, Parrya nudicaulis (Brassicaceae)

    Get PDF
    Pollen limitation is predicted to be particularly severe in tundra habitats. Numerous reproductive patterns associated with alpine and arctic species, particularly mechanisms associated with reproductive assurance, are suggested to be driven by high levels of pollen limitation. We studied the reproductive ecology of Parrya nudicaulis, a species with relatively large sexual reproductive investment and a wide range of floral pigmentation, in tundra habitats in interior montane Alaska to estimate the degree of pollen limitation. The plants are self-compatible and strongly protandrous, setting almost no seed in the absence of pollinators. Supplemental hand pollinations within pollinator exclusion cages indicated no cage effect on seed production. Floral visitation rates were low in both years of study and particularly infrequent in 2010. A diversity of insects visited P. nudicaulis, though syrphid and muscid flies composed the majority of all visits. Pollen-ovule ratios and levels of heterozygosity are consistent with a mixed mating system. Pollen limitation was severe; hand pollinations increased seed production per plant five-fold. Seed-to-ovule ratios remained low following hand pollinations, indicating resource limitation is likely to also be responsible for curtailing seed set. We suggest that pollen limitation in P. nudicaulis may be the result of selection favoring an overproduction of ovules as a bet-hedging strategy in this environmental context of highly variable pollen receipt
    corecore