993 research outputs found
Star-formation in the central kpc of the starburst/LINER galaxy NGC1614
A high angular resolution, multi-wavelength study of the LINER galaxy NGC1614
has been carried out. OVRO CO 1-0 observations are presented together with
extensive multi-frequency radio continuum and HI absorption observations with
the VLA and MERLIN. Toward the center of NGC1614, we have detected a ring of
radio continuum emission with a radius of 300 pc. This ring is coincident with
previous radio and Paschen-alpha observations. The dynamical mass of the ring
based on HI absorption is 3.1 x 10E9 Msun. The peak of the integrated CO 1-0
emission is shifted by 1" to the north-west of the ring center and a
significant fraction of the CO emission is associated with a crossing dust
lane. An upper limit to the molecular gas mass in the ring region is 1.7 x 10E9
Msun. Inside the ring, there is a north to south elongated 1.4GHz radio
continuum feature with a nuclear peak. This peak is also seen in the 5GHz radio
continuum and in the CO. We suggest that the R=300 pc star forming ring
represents the radius of a dynamical resonance - as an alternative to the
scenario that the starburst is propagating outwards from the center into a
molecular ring. The ring-like appearance probably part of a spiral structure.
Substantial amounts of molecular gas have passed the radius of the ring and
reached the nuclear region. The nuclear peak seen in 5GHz radio continuum and
CO is likely related to previous star formation, where all molecular gas was
not consumed. The LINER-like optical spectrum observed in NGC1614 may be due to
nuclear starburst activity, and not to an Active Galactic Nucleus (AGN).
Although the presence of an AGN cannot be excluded.Comment: Accepted by Astronomy and Astrophysics, 12 pages, 10 figure
Gas kinematics in massive star-forming regions from the Perseus spiral arm
We present results of a survey of 14 star-forming regions from the Perseus
spiral arm in CS(2-1) and 13CO(1-0) lines with the Onsala Space Observatory 20
m telescope. Maps of 10 sources in both lines were obtained. For the remaining
sources a map in just one line or a single-point spectrum were obtained. On the
basis of newly obtained and published observational data we consider the
relation between velocities of the "quasi-thermal" CS(2-1) line and 6.7 GHz
methanol maser line in 24 high-mass star-forming regions in the Perseus arm. We
show that, surprisingly, velocity ranges of 6.7 GHz methanol maser emission are
predominantly red-shifted with respect to corresponding CS(2-1) line velocity
ranges in the Perseus arm. We suggest that the predominance of the "red-shifted
masers" in the Perseus arm could be related to the alignment of gas flows
caused by the large-scale motions in the Galaxy. Large-scale galactic shock
related to the spiral structure is supposed to affect the local kinematics of
the star-forming regions. Part of the Perseus arm, between galactic longitudes
from 85deg to 124deg, does not contain blue-shifted masers at all. Radial
velocities of the sources are the greatest in this particular part of the arm,
so the velocity difference is clearly pronounced. 13CO(1-0) and CS(2-1)
velocity maps of G183.35-0.58 show gas velocity difference between the center
and the periphery of the molecular clump up to 1.2 km/s. Similar situation is
likely to occur in G85.40-0.00. This can correspond to the case when the
large-scale shock wave entrains the outer parts of a molecular clump in motion
while the dense central clump is less affected by the shock.Comment: accepted by Astronomy Report
Multi-frequency Studies of Massive Cores with Complex Spatial and Kinematic Structures
Five regions of massive star formation have been observed in various
molecular lines in the frequency range GHz. The studied regions
possess dense cores, which host young stellar objects. The physical parameters
of the cores are estimated, including kinetic temperatures ( K),
sizes of the emitting regions ( pc), and virial masses (). Column densities and abundances of various molecules are
calculated in the local thermodynamical equilibrium approximation. The core in
99.982+4.17, associated with the weakest IRAS source, is characterized by
reduced molecular abundances. Molecular line widths decrease with increasing
distance from the core centers (). For b\ga 0.1~pc, the dependences
are close to power laws (), where varies from
to , depending on the object. In four cores, the
asymmetries of the optically thick HCN(1--0) and HCO(1--0) lines indicate
systematic motions along the line of sight: collapse in two cores and expansion
in two others. Approximate estimates of the accretion rates in the collapsing
cores indicate that the forming stars have masses exceeding the solar mass.Comment: 18 pages, 7 figures, 6 table
Formation of massive clouds and dwarf galaxies during tidal encounters
Gerola et al. (1983) propose that isolated dwarf galaxies can form during galaxy interactions. As evidence of this process, Mirabel et al. (1991) find 10(exp 9) solar mass clouds and star formation complexes at the outer ends of the tidal arms in the Antennae and Superantennae galaxies. We describe observations of HI clouds with mass greater than 10(exp 8) solar mass in the interacting galaxy pair IC 2163/NGC 2207. This pair is important because we believe it represents an early stage in the formation of giant clouds during an encounter. We use a gravitational instability model to explain why the observed clouds are so massive and discuss a two-dimensional N-body simulation of an encounter that produces giant clouds
Molecular gas in high-mass filament WB673
We studied the distribution of dense gas in a filamentary molecular cloud
containing several dense clumps. The center of the filament is given by the
dense clump WB673. The clumps are high-mass and intermediate-mass star-forming
regions. We observed CS(2-1), 13CO(1-0), C18O(1-0) and methanol lines at 96GHz
toward WB673 with the Onsala Space Observatory 20-m telescope. We found CS(2-1)
emission in the inter-clump medium so the clumps are physically connected and
the whole cloud is indeed a filament. Its total mass is M and
mass-to-length ratio is 360 Mpc from 13CO(1-0) data.
Mass-to-length ratio for the dense gas is Mpc from
CS(2-1) data. The PV-diagram of the filament is V-shaped. We estimated physical
conditions in the molecular gas using methanol lines. Location of the filament
on the sky between extended shells suggests that it could be a good example to
test theoretical models of formation of the filaments via multiple compression
of interstellar gas by supersonic waves
Signatures of restarted activity in core-dominated, triple radio sources selected from the FIRST survey
Signatures of the re-occurrence of activity in radio-loud AGNs, indicated
either by the so-called double-double or X-shaped structures, have been
observed in a number of radio sources. All such objects known to date have
linear sizes of the order of a megaparsec. A number of the sources that are
appreciably more compact than this, but that exhibit hints of a past phase of
activity, were found in the VLA FIRST survey. Their structures show symmetric
relic lobes straddling relatively bright, unresolved cores. Observations of the
cores of 15 such structures with MERLIN at 5 GHz have shown that four of them
are doubles or core-jets on the subarcsecond scale. Misalignments of \Delta PA
\ga 30 degr. between the axis of the inner structure and the line connecting
the fitted maxima of the arcminute-scale relic lobes are clearly visible in
three of the four sources. From these results, we can infer that a rapid
repositioning of the central engine in each of these three radio sources is the
most plausible interpretation of the observed morphology and that a merger is
most likely the original cause of such a repositioning. In the case of TXS
1033+026, the optical image extracted from the SDSS archives clearly suggests
that two objects separated by only 2.7 kpc (projected onto the sky plane) are
indeed merging. The inner parts of TXS 0818+214 and TXS 1312+563 could be
interpreted as double-lobed, and consequently, these sources could be of the
double-double type; but further multifrequency observations are necessary to
provide support for such an interpretation.Comment: 9 pages, 5 figures, matches the version printed in Astronomy &
Astrophysics, very minor correction of Table
Radiation testing of composite materials, in situ versus ex situ effects
The effect of post irradiation test environments on tensile properties of representative advanced composite materials (T300/5208, T300/934, C6000/P1700) was investigated. Four ply (+ or - 45 deg/+ or - 45 deg) laminate tensile specimens were exposed in vacuum up to a bulk dose of 1 x 10 to the 10th power rads using a mono-energetic fluence of 700 keV electrons from a Van de Graaff accelerator. Post irradiation testing was performed while specimens were being irradiated (in situ data), in vacuum after cessation of irradiation (in vacuo data), and after exposure to air (ex situ data). Room temperature and elevated temperature effects were evaluated. The radiation induced changes to the tensile properties were small. Since the absolute changes in tensile properties were small, the existance of a post irradiation test environment effect was indeterminate
Molecular line and continuum study of the W40 cloud
The dense cloud associated with W40, one of the nearby H II regions, has been
studied in millimeter-wave molecular lines and in 1.2 mm continuum. Besides,
1280 MHz and 610 MHz interferometric observations have been done. The cloud has
complex morphological and kinematical structure, including a clumpy dust ring
and an extended dense core. The ring is probably formed by the "collect and
collapse" process due to the expansion of neighboring H II region. Nine dust
clumps in the ring have been deconvolved. Their sizes, masses and peak hydrogen
column densities are: pc, and cm, respectively. Molecular lines are observed
at two different velocities and have different spatial distributions implying
strong chemical differentiation over the region. The CS abundance is enhanced
towards the eastern dust clump 2, while the NH, NH, and
HCO abundances are enhanced towards the western clumps. HCN and
HCO do not correlate with the dust probably tracing the surrounding gas.
Number densities derived towards selected positions are: cm. Two western clumps have kinetic temperatures 21 K and 16 K and
are close to virial equilibrium. The eastern clumps 2 and 3 are more massive,
have higher extent of turbulence and are probably more evolved than the western
ones. They show asymmetric CS(2--1) line profiles due to infalling motions
which is confirmed by model calculations. An interaction between ionized and
neutral material is taking place in the vicinity of the eastern branch of the
ring and probably trigger star formation.Comment: 16 pages, 6 figure
- …
