22 research outputs found

    Evolutionary Entropy: A Predictor of Body Size, Metabolic Rate and Maximal Life Span

    Get PDF
    Body size of organisms spans 24 orders of magnitude, and metabolic rate and life span present comparable differences across species. This article shows that this variation can be explained in terms of evolutionary entropy, a statistical parameter which characterizes the robustness of a population, and describes the uncertainty in the age of the mother of a randomly chosen newborn. We show that entropy also has a macroscopic description: It is linearly related to the logarithm of the variables body size, metabolic rate, and life span. Furthermore, entropy characterizes Darwinian fitness, the efficiency with which a population acquires and converts resources into viable offspring. Accordingly, entropy predicts the outcome of natural selection in populations subject to different classes of ecological constraints. This predictive property, when integrated with the macroscopic representation of entropy, is the basis for enormous differences in morphometric and life-history parameters across species

    Navigating infection risk during oviposition and cannibalistic foraging in a holometabolous insect

    Get PDF
    Deciding where to eat and raise offspring carries important fitness consequences for all animals, especially if foraging, feeding and reproduction increase pathogen exposure. In insects with complete metamorphosis, foraging mainly occurs during the larval stage, while oviposition decisions are made by adult females. Selection for infection avoidance behaviours may therefore be developmentally uncoupled. Using a combination of experimental infections and behavioral choice assays, we tested if Drosophila melanogaster fruit flies avoid infectious environments at distinct developmental stages. When given conspecific fly carcasses as a food source, larvae did not discriminate between carcasses that were clean or infected with the pathogenic Drosophila C Virus (DCV), even though cannibalism was a viable route of DCV transmission. When laying eggs, DCV-infected females did not discriminate between infectious and non-infectious carcasses. Healthy mothers however, laid more eggs near a clean rather than an infectious carcass. Avoidance during oviposition changed over time: after an initial oviposition period, healthy mothers stopped avoiding infectious carcasses. We attribute this to a trade-off between infection risk and reproduction. Laying eggs near potentially infectious carcasses was always preferred to sites containing only fly food. Our findings suggest infection avoidance contributes to how mothers provision their offspring and underline the need to consider infection avoidance behaviors at multiple life-stages
    corecore