58 research outputs found

    Point interactions in a strip

    Full text link
    We study the behavior of a quantum particle confined to a hard--wall strip of a constant width in which there is a finite number N N of point perturbations. Constructing the resolvent of the corresponding Hamiltonian by means of Krein's formula, we analyze its spectral and scattering properties. The bound state--problem is analogous to that of point interactions in the plane: since a two--dimensional point interaction is never repulsive, there are m m discrete eigenvalues, 1≤m≤N 1\le m\le N , the lowest of which is nondegenerate. On the other hand, due to the presence of the boundary the point interactions give rise to infinite series of resonances; if the coupling is weak they approach the thresholds of higher transverse modes. We derive also spectral and scattering properties for point perturbations in several related models: a cylindrical surface, both of a finite and infinite heigth, threaded by a magnetic flux, and a straight strip which supports a potential independent of the transverse coordinate. As for strips with an infinite number of point perturbations, we restrict ourselves to the situation when the latter are arranged periodically; we show that in distinction to the case of a point--perturbation array in the plane, the spectrum may exhibit any finite number of gaps. Finally, we study numerically conductance fluctuations in case of random point perturbations.Comment: a LaTeX file, 38 pages, to appear in Ann. Phys.; 12 figures available at request from [email protected]

    Bound states and scattering in quantum waveguides coupled laterally through a boundary window

    Full text link
    We consider a pair of parallel straight quantum waveguides coupled laterally through a window of a width â„“ \ell in the common boundary. We show that such a system has at least one bound state for any â„“>0 \ell>0 . We find the corresponding eigenvalues and eigenfunctions numerically using the mode--matching method, and discuss their behavior in several situations. We also discuss the scattering problem in this setup, in particular, the turbulent behavior of the probability flow associated with resonances. The level and phase--shift spacing statistics shows that in distinction to closed pseudo--integrable billiards, the present system is essentially non--chaotic. Finally, we illustrate time evolution of wave packets in the present model.Comment: LaTeX text file with 12 ps figure

    Strongly magnetized iron white dwarfs and the total lepton number violation

    Full text link
    The influence of a neutrinoless electron to positron conversion on a cooling of strongly magnetized iron white dwarfs is studied.Comment: 4 pages, contribution to the conference MEDEX'13, Prague, June 11-14, 201

    Short-range oscillators in power-series picture

    Get PDF
    A class of short-range potentials on the line is considered as an asymptotically vanishing phenomenological alternative to the popular confining polynomials. We propose a method which parallels the analytic Hill-Taylor description of anharmonic oscillators and represents all our Jost solutions non-numerically, in terms of certain infinite hypergeometric-like series. In this way the well known solvable Rosen-Morse and scarf models are generalized.Comment: 23 pages, latex, submitted to J. Phys. A: Math. Ge

    Pseudospectra in non-Hermitian quantum mechanics

    Get PDF
    We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT-symmetric quantum mechanics.Comment: version accepted for publication in J. Math. Phys.: criterion excluding basis property (Proposition 6) added, unbounded time-evolution discussed, new reference
    • …
    corecore