566 research outputs found

    Asteroids Observed by The Sloan Digital Sky Survey

    Get PDF
    We announce the first public release of the SDSS Moving Object Catalog, with SDSS observations for 58,117 asteroids. The catalog lists astrometric and photometric data for moving objects observed prior to Dec 15, 2001, and also includes orbital elements for 10,592 previously known objects. We analyze the correlation between the orbital parameters and optical colors for the known objects, and confirm that asteroid dynamical families, defined as clusters in orbital parameter space, also strongly segregate in color space. Their distinctive optical colors indicate that the variations in chemical composition within a family are much smaller than the compositional differences between families, and strongly support earlier suggestions that asteroids belonging to a particular family have a common origin.Comment: 6 pages, 1 color figure, to be presented at "Astronomical Telescopes & Instrumentation", SPIE 200

    An optimal Earth Trojan asteriod search strategy

    Get PDF
    Trojan asteroids are minor planets that share the orbit of a planet about the Sun and librate around the L4 or L5 Lagrangian points of stability. They are important solar-system fossils because they carry information on early Solar system formation, when collisions between bodies were more frequent. Discovery and study of terrestrial planet Trojans will help constrain models for the distribution of bodies and interactions in the inner Solar system. Since the discovery of the first outer planet Trojan in 1906, several thousand Jupiter Trojans have been found. Of the terrestrial planets, there are four known Mars Trojans, and one Earth Trojan has been recently discovered. We present a new model that constrains optimal search areas, and imaging cadences for narrow and wide-field survey telescopes including the Gaia satellite for the most efficient use of telescope time to maximize the probability of detecting additional Earth Trojans

    Differential regulation of glucocorticoid receptor messenger RNA (GR-mRNA) by maternal deprivation in immature rat hypothalamus and limbic regions.

    Get PDF
    Maternal deprivation (MDep) of neonatal rats significantly influences the hypothalamic-pituitary-adrenal (HPA) axis. This study hypothesized that GR-mRNA modulation constituted an early, critical mechanism for the acute effects of MDep on neuroendocrine stress-responses. GR-mRNA hybridization signal in hippocampal CA1, hypothalamic paraventricular nucleus (PVN) and frontal cortex was significantly reduced immediately following 24 h MDep. In amygdala, cingulate cortex, PVN and CA1, apparent gender-dependent MDep effects on GR-mRNA expression were observed, without significant differences in absolute levels. Thus, rapid, region-specific MDep effects on GR-mRNA expression in HPA-regulating areas are shown, consistent with involvement of GR-expression in mechanisms of MDep influence on HPA tone

    Down-regulation of hypothalamic corticotropin-releasing hormone messenger ribonucleic acid (mRNA) precedes early-life experience-induced changes in hippocampal glucocorticoid receptor mRNA.

    Get PDF
    Early-life experiences, including maternal interaction, profoundly influence hormonal stress responses during adulthood. In rats, daily handling during a critical neonatal period leads to a significant and permanent modulation of key molecules that govern hormonal secretion in response to stress. Thus, hippocampal glucocorticoid receptor (GR) expression is increased, whereas hypothalamic CRH-messenger RNA (mRNA) levels and stress-induced glucocorticoid release are reduced in adult rats handled early in life. Recent studies have highlighted the role of augmented maternal sensory input to handled rats as a key determinant of these changes. However, the molecular mechanisms, and particularly the critical, early events leading from enhanced sensory experience to long-lasting modulation of GR and CRH gene expression, remain largely unresolved. To elucidate the critical primary genes governing this molecular cascade, we determined the sequence of changes in GR-mRNA levels and in hypothalamic and amygdala CRH-mRNA expression at three developmental ages, and the temporal relationship between each of these changes and the emergence of reduced hormonal stress-responses. Down-regulation of hypothalamic CRH-mRNA levels in daily-handled rats was evident already by postnatal day 9, and was sustained through postnatal days 23 and 45, i.e. beyond puberty. In contrast, handling-related up-regulation of hippocampal GR-mRNA expression emerged subsequent to the 23rd postnatal day, i.e. much later than changes in hypothalamic CRH expression. The hormonal stress response of handled rats was reduced starting before postnatal day 23. These findings indicate that early, rapid, and persistent changes of hypothalamic CRH gene expression may play a critical role in the mechanism(s) by which early-life experience influences the hormonal stress-response long-term

    The personal belief in a just world and domain-specific beliefs about justice at school and in the family: A longitudinal study with adolescents

    Get PDF
    This article investigates the relationship between the personal belief in a just world (BJW) and domain-specific beliefs about justice and examines how justice cognitions impact on adolescents' development, particularly on their achievement at school and their subjective well-being. A longitudinal questionnaire study with German adolescents aged 14-19 years was conducted over a period of five to eight months. The pattern of results revealed that evaluations of the school climate and of the family climate as being just were two distinct phenomena, both of which impacted on the personal BJW, which in turn affected the domain-specific beliefs about justice. However, the domain-specific beliefs about justice did not impact on each other directly. Moreover, an evaluation of the family climate (but not of the school climate) as being just reduced depressive symptoms, whereas depressive symptoms did not weaken the evaluation of one's family as being just. The evaluation of the school climate as being just improved the grades received in the next school report, whereas the grades received did not affect the justice evaluation of the school climate. Finally, all relationships persisted when controlling for age and gender. In sum, the pattern of findings supports the notion that justice cognitions impact on development during adolescence

    Three-dimensional Calculations of High and Low-mass Planets Embedded in Protoplanetary Discs

    Get PDF
    We analyse the non-linear, three-dimensional response of a gaseous, viscous protoplanetary disc to the presence of a planet of mass ranging from one Earth mass (1 Me_e) to one Jupiter mass (1 MJ_J) by using the ZEUS hydrodynamics code. We determine the gas flow pattern, and the accretion and migration rates of the planet. The planet is assumed to be in a fixed circular orbit about the central star. It is also assumed to be able to accrete gas without expansion on the scale of its Roche radius. Only planets with masses M \gsim 0.1 MJ_J produce significant perturbations in the disc's surface density. The flow within the Roche lobe of the planet is fully three-dimensional. Gas streams generally enter the Roche lobe close to the disc midplane, but produce much weaker shocks than the streams in two-dimensional models. The streams supply material to a circumplanetary disc that rotates in the same sense as the planet's orbit. Much of the mass supply to the circumplanetary disc comes from non-coplanar flow. The accretion rate peaks with a planet mass of approximately 0.1 MJ_J and is highly efficient, occurring at the local viscous rate. The migration timescales for planets of mass less than 0.1 MJ_J, based on torques from disc material outside the planets' Roche lobes, are in excellent agreement with the linear theory of Type I (non-gap) migration for three-dimensional discs. The transition from Type I to Type II (gap) migration is smooth, with changes in migration times of about a factor of 2. Starting with a core which can undergo runaway growth, a planet can gain up to a few MJ_J with little migration. Planets with final masses of order 10 MJ_J would undergo large migration, which makes formation and survival difficult.Comment: Accepted by MNRAS, 18 pages, 13 figures (6 degraded resolution). Paper with high-resolution figures available at http://www.astro.ex.ac.uk/people/mbate

    Color Confirmation of Asteroid Families

    Full text link
    We discuss optical colors of 10,592 asteroids with known orbits selected from a sample of 58,000 moving objects observed by the Sloan Digital Sky Survey (SDSS). This is more than ten times larger sample that includes both orbital parameters and multi-band photometric measurements than previously available. We confirm that asteroid dynamical families, defined as clusters in orbital parameter space, also strongly segregate in color space. In particular, we demonstrate that the three major asteroid families (Eos, Koronis, and Themis), together with the Vesta family, represent four main asteroid color types. Their distinctive optical colors indicate that the variations in chemical composition within a family are much smaller than the compositional differences between families, and strongly support earlier suggestions that asteroids belonging to a particular family have a common origin. We estimate that over 90% of asteroids belong to families.Comment: 18 pages, color figures, accepted by A

    Neuromuscular Basis of Drosophila Larval Rolling Escape Behavior

    Get PDF
    To escape from dangerous stimuli, animals execute escape behaviors that are fundamentally different from normal locomotion. The rolling escape behavior of Drosophila larvae consists of C-shaped bending and rolling. However, the muscle contraction patterns that lead to rolling are poorly understood. We find that following the initial body bending, muscles contract in a circumferential wave around the larva as they enter the bend, maintaining unidirectional rolling that resembles a cylinder rolling on a surface. We study the structure of motor circuits for rolling, inhibit different motor neurons to determine which muscles are essential for rolling, and propose circuit and biomechanical models for roll generation. Our findings provide insights into how motor circuits produce diverse motor behaviors

    Behavioral Responses to a Repetitive Visual Threat Stimulus Express a Persistent State of Defensive Arousal in Drosophila

    Get PDF
    The neural circuit mechanisms underlying emotion states remain poorly understood. Drosophila offers powerful genetic approaches for dissecting neural circuit function, but whether flies exhibit emotion-like behaviors has not been clear. We recently proposed that model organisms may express internal states displaying “emotion primitives,” which are general characteristics common to different emotions, rather than specific anthropomorphic emotions such as “fear” or “anxiety.” These emotion primitives include scalability, persistence, valence, and generalization to multiple contexts. Here, we have applied this approach to determine whether flies’ defensive responses to moving overhead translational stimuli (“shadows”) are purely reflexive or may express underlying emotion states. We describe a new behavioral assay in which flies confined in an enclosed arena are repeatedly exposed to an overhead translational stimulus. Repetitive stimuli promoted graded (scalable) and persistent increases in locomotor velocity and hopping, and occasional freezing. The stimulus also dispersed feeding flies from a food resource, suggesting both negative valence and context generalization. Strikingly, there was a significant delay before the flies returned to the food following stimulus-induced dispersal, suggestive of a slowly decaying internal defensive state. The length of this delay was increased when more stimuli were delivered for initial dispersal. These responses can be mathematically modeled by assuming an internal state that behaves as a leaky integrator of stimulus exposure. Our results suggest that flies’ responses to repetitive visual threat stimuli express an internal state exhibiting canonical emotion primitives, possibly analogous to fear in mammals. The mechanistic basis of this state can now be investigated in a genetically tractable insect species
    • …
    corecore