27 research outputs found

    Exploring the use of adjusted body mass index thresholds based on equivalent insulin resistance for defining overweight and obesity in UK South Asian children

    Get PDF
    Background Body mass index (BMI) overweight/obesity thresholds in South Asian (SA) adults, at equivalent type-2 diabetes risk are lower than for white Europeans (WE). We aimed to define adjusted overweight/obesity thresholds for UK–SA children based on equivalent insulin resistance (HOMA-IR) to WE children. Methods In 1138 WE and 1292 SA children aged 9.0–10.9 years, multi-level regression models quantified associations between BMI and HOMA-IR by ethnic group. HOMA-IR levels for WE children were calculated at established overweight/obesity thresholds (at 9.5 years and 10.5 years), based on UK90 BMI cut-offs. Quantified associations in SA children were then used to estimate adjusted SA weight-status thresholds at the calculated HOMA-IR levels. Results At 9.5 years, current WE BMI overweight and obesity thresholds were 19.2 kg/m2, 21.3 kg/m2 (boys) and 20.0 kg/m2, 22.5 kg/m2 (girls). At equivalent HOMA-IR, SA overweight and obesity thresholds were lower by 2.9 kg/m2 (95% CI: 2.5–3.3 kg/m2) and 3.2 kg/m2 (95% CI: 2.7–3.6 kg/m2) in boys and 3.0 kg/m2 (95% CI: 2.6–3.4 kg/m2) and 3.3 kg/m2 (95% CI: 2.8–3.8 kg/m2) in girls, respectively. At these lower thresholds, overweight/obesity prevalences in SA children were approximately doubled (boys: 61%, girls: 56%). Patterns at 10.5 years were similar. Conclusions SA adjusted overweight/obesity thresholds based on equivalent IR were markedly lower than BMI thresholds for WE children, and defined more than half of SA children as overweight/obese

    Reassessing Ethnic Differences in Mean BMI and Changes Between 2007 and 2013 in English Children.

    Get PDF
    OBJECTIVE: National body fatness (BF) data for English South Asian and Black children use BMI, which provides inaccurate ethnic comparisons. BF levels and time trends in the English National Child Measurement Programme (NCMP) between 2007 and 2013 were assessed by using ethnic-specific adjusted BMI (aBMI) for South Asian and Black children. METHODS: Analyses were based on 3,195,323 children aged 4 to 5 years and 2,962,673 children aged 10 to 11 years. aBMI values for South Asian and Black children (relating to BF as in White children) were derived independently. Mean aBMI levels and 5-year aBMI changes were obtained by using linear regression. RESULTS: In the 2007-2008 NCMP, mean aBMIs in 10- to 11-year-old children (boys, girls) were higher in South Asian children (20.1, 19.9 kg/m2 ) and Black girls, but not in Black boys (18.4, 19.2 kg/m2 ) when compared with White children (18.6, 19.0 kg/m2 ; all P < 0.001). Mean 5-year changes (boys, girls) were higher in South Asian children (0.16, 0.32 kg/m2 per 5 y; both P < 0.001) and Black boys but not girls (0.13, 0.15 kg/m2 per 5 y; P = 0.01, P = 0.41) compared with White children (0.02, 0.11 kg/m2 per 5 y). Ethnic differences at 4 to 5 years were similar. Unadjusted BMI showed similar 5-year changes but different mean BMI patterns. CONCLUSIONS: BF levels were higher in South Asian children than in other groups in 2007 and diverged from those in White children until 2013, a pattern not apparent from unadjusted BMI data

    Patterns of childhood body mass index (BMI), overweight and obesity in South Asian and black participants in the English National child measurement programme: effect of applying BMI adjustments standardising for ethnic differences in BMI-body fatness associations.

    Get PDF
    BACKGROUND: The National Child Measurement Programme (NCMP) records weight and height and assesses overweight-obesity patterns in English children using body mass index (BMI), which tends to underestimate body fatness in South Asian children and overestimate body fatness in Black children of presumed African ethnicity. Using BMI adjustments to ensure that adjusted BMI was similarly related to body fatness in South Asian, Black and White children, we reassessed population overweight and obesity patterns in these ethnic groups in NCMP. METHODS: Analyses were based on 2012-2013 NCMP data in 582 899 children aged 4-5 years and 485 362 children aged 10-11 years. Standard centile-based approaches defined weight status in each age group before and after applying BMI adjustments for English South Asian and Black children derived from previous studies using the deuterium dilution method. FINDINGS: Among White children, overweight-obesity prevalences (boys, girls) were 23% and 21%, respectively, in 4-5 year olds and 33% and 30%, respectively, in 10-11 year olds. Before adjustment, South Asian children had lower overweight-obesity prevalences at 4-5 years (19%, 19%) and slightly higher prevalences at 10-11 years (42%, 34%), whereas Black children had higher overweight-obesity prevalences both at 4-5 years (31%, 29%) and 10-11 years (42%, 45%). Following adjustment, overweight-obesity prevalences were markedly higher in South Asian children both at 4-5 years (39%, 35%) and at 10-11 years (52%, 44%), whereas Black children had lower prevalences at 4-5 years (11%, 12%); at 10-11 years, prevalences were slightly lower in boys (32%) but higher in girls (35%). INTERPRETATION: BMI adjustments revealed extremely high overweight-obesity prevalences among South Asian children in England, which were not apparent in unadjusted data. In contrast, after adjustment, Black children had lower overweight-obesity prevalences except among older girls. FUNDING: British Heart Foundation, NIHR CLAHRC (South London), NIHR CLAHRC (North Thames)

    Development and validation of a prediction model for fat mass in children and adolescents: Meta-analysis using individual participant data

    Get PDF
    © Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to. To develop and validate a prediction model for fat mass in children aged 4-15 years using routinely available risk factors of height, weight, and demographic information without the need for more complex forms of assessment. Design Individual participant data meta-analysis. Setting Four population based cross sectional studies and a fifth study for external validation, United Kingdom. Participants A pooled derivation dataset (four studies) of 2375 children and an external validation dataset of 176 children with complete data on anthropometric measurements and deuterium dilution assessments of fat mass. Main outcome measure Multivariable linear regression analysis, using backwards selection for inclusion of predictor variables and allowing non-linear relations, was used to develop a prediction model for fat-free mass (and subsequently fat mass by subtracting resulting estimates from weight) based on the four studies. Internal validation and then internal-external cross validation were used to examine overfitting and generalisability of the model\u27s predictive performance within the four development studies; external validation followed using the fifth dataset. Results Model derivation was based on a multi-ethnic population of 2375 children (47.8% boys, n=1136) aged 4-15 years. The final model containing predictor variables of height, weight, age, sex, and ethnicity had extremely high predictive ability (optimism adjusted R 2: 94.8%, 95% confidence interval 94.4% to 95.2%) with excellent calibration of observed and predicted values. The internal validation showed minimal overfitting and good model generalisability, with excellent calibration and predictive performance. External validation in 176 children aged 11-12 years showed promising generalisability of the model (R 2: 90.0%, 95% confidence interval 87.2% to 92.8%) with good calibration of observed and predicted fat mass (slope: 1.02, 95% confidence interval 0.97 to 1.07). The mean difference between observed and predicted fat mass was -1.29 kg (95% confidence interval -1.62 to -0.96 kg). Conclusion The developed model accurately predicted levels of fat mass in children aged 4-15 years. The prediction model is based on simple anthropometric measures without the need for more complex forms of assessment and could improve the accuracy of assessments for body fatness in children (compared with those provided by body mass index) for effective surveillance, prevention, and management of clinical and public health obesity

    Body-mass index adjustments to increase the validity of body fatness assessment in UK black African and South Asian children: a cross-sectional calibration study

    Get PDF
    BackgroundExcess childhood body fatness, overweightness, and obesity are a major public health challenge in the UK. Accurate assessments, usually based on body-mass index (BMI), are crucial. However, recent studies have demonstrated that BMI underestimates body fatness in South Asian children and overestimates it in black African children. These errors are a concern in these ethnic minority populations, particularly UK South Asians, who are at high risk of obesity, type 2 diabetes, and cardiovascular disease. We aimed to develop BMI adjustments for these children to ensure that BMI relates to body fatness in the same way as for white European children.MethodsFour recent UK population-based studies, which used deuterium dilution assessments of fat mass as a reference method, were pooled to include 1725 children (52% girls) aged 4–12 years (mean 9·3, SD 1·6) of white European, South Asian, and black African origins. A height-standardised fat-mass index (FMI) was derived to represent body fatness. Linear regression models were fitted, separately by sex, to quantify ethnic differences in BMI–FMI associations and to provide ethnic-specific BMI adjustments.FindingsThe FMI derived for this study population and used in analyses was fat mass/height5, which was independent of height for the 4–12-year age-group. BMI consistently underestimated body fatness in South Asians, requiring a BMI adjustment of +1·12 kg/m2 (95% CI 0·83–1·41) for boys and +1·07 (0·74–1·39) for girls, irrespective of age and FMI. BMI overestimated body fatness in black Africans. However, adjustments for black African children were more complex, with statistically significant interactions between black African ethnicity and FMI (p=0·004 boys, p=0·003 girls) and between FMI and age-group (p\u3c0·0001 boys and girls). BMI adjustments therefore varied by age-group and FMI level, between −0·24 and −2·84 kg/m2 for boys and between −0·22 and −2·86 kg/m2 for girls for unadjusted BMI values of 13 kg/m2 in 10–12 year-olds and 25 kg/m2 in 4–6 year-olds, respectively.InterpretationBMI underestimated body fatness in South Asians and overestimated it in black Africans. Ethnic-specific adjustments—increasing BMI in South Asians and reducing BMI in black Africans—can improve the accuracy of body fatness assessment in these children.FundingThis work was supported by the British Heart Foundation (grant ref PG/15/19/31336) and National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care (South London) (grant ref CLAHRC-2013-10022). Primary data collection was funded by the British Heart Foundation (PG/11/42/28895), BUPA Foundation (TBF-S09-019), Child Growth Foundation (GR 10/03), and Wellcome Trust (WT094129MA). MF is supported by Great Ormond Street Hospital Childrens\u27 Charity

    Waterborne hyperbranched alkyd-acrylic resin obtained by miniemulsion polymerization

    Full text link
    Abstract Four waterborne hyperbranched alkyd-acrylic resins (HBRAA) were synthesized by miniemulsion polymerization from a hyperbranched alkyd resin (HBR), methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA), by using benzoyl peroxide (BPO) and ammonium persulfate (AP) as initiators. The reaction between HBR and acrylic monomers was evidenced by differential scanning calorimetric (DSC), nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The conversion percentage, glass transition temperature (Tg), content of acrylic polymer (determined by soxhlet extraction) and molecular weight increased with the content of acrylic monomers used in the synthesis. The main structure formed during the synthesis was the HBRAA. The analysis by dynamic light scattering (DLS) showed that the particle size distribution of HBRAA2, HBRAA3 and HBRAA4 resins were mainly monomodal. The film properties (gloss, flexibility, adhesion and drying time) of the HBRAA were good

    Body mass index adjustments to increase the validity of body fatness assessment in UK Black African and South Asian children.

    Get PDF
    BACKGROUND/OBJECTIVES: Body mass index (BMI) (weight per height(2)) is the most widely used marker of childhood obesity and total body fatness (BF). However, its validity is limited, especially in children of South Asian and Black African origins. We aimed to quantify BMI adjustments needed for UK children of Black African and South Asian origins so that adjusted BMI related to BF in the same way as for White European children. METHODS: We used data from four recent UK studies that made deuterium dilution BF measurements in UK children of White European, South Asian and Black African origins. A height-standardized fat mass index (FMI) was derived to represent BF. Linear regression models were then fitted, separately for boys and girls, to quantify ethnic differences in BMI-FMI relationships and to provide ethnic-specific BMI adjustments. RESULTS: We restricted analyses to 4-12 year olds, to whom a single consistent FMI (fat mass per height(5)) could be applied. BMI consistently underestimated BF in South Asians, requiring positive BMI adjustments of +1.12 kg m(-)(2) (95% confidence interval (CI): 0.83, 1.41 kg m(-)(2); P<0.0001) for boys and +1.07 kg m(-)(2) (95% CI: 0.74, 1.39 kg m(-)(2); P<0.0001) for girls of all age groups and FMI levels. BMI overestimated BF in Black Africans, requiring negative BMI adjustments for Black African children. However, these were complex because there were statistically significant interactions between Black African ethnicity and FMI (P=0.004 boys; P=0.003 girls) and also between FMI and age group (P<0.0001 for boys and girls). BMI adjustments therefore varied by age group and FMI level (and indirectly BMI); the largest adjustments were in younger children with higher unadjusted BMI and the smallest in older children with lower unadjusted BMI. CONCLUSIONS: BMI underestimated BF in South Asians and overestimated BF in Black Africans. Ethnic-specific adjustments, increasing BMI in South Asians and reducing BMI in Black Africans, can improve the accuracy of BF assessment in these children.International Journal of Obesity advance online publication, 25 April 2017; doi:10.1038/ijo.2017.75
    corecore