284 research outputs found

    Acceptability, reliability, validity and responsiveness of the Turkish version of WOMAC osteoarthritis index

    Get PDF
    SummaryObjectiveTo evaluate the acceptability, reliability, validity and responsiveness of the Turkish version of Western Ontario and McMaster Universities (WOMAC) osteoarthritis (OA) index in physiotherapy outpatient practice in Turkey.MethodData were obtained from 72 patients with OA of the knee. They were asked to answer two disease-specific questionnaires (WOMAC LK 3.1 and Lequesne-Algofunctional Index of Severity for the knee) and one generic instrument (Medical Outcomes study SF-36 Survey-SF-36). Acceptability was assessed in terms of refusal rate, rates of missing responses, and administration time. Reliability was assessed using Cronbach's alpha. Content validity was assessed by examining the floor and ceiling effects, and skew of the distributions. Convergent and divergent validity was assessed by examining the Pearson's correlation coefficients. Responsiveness was determined by examining effect size (ES), standardized response means (SRM) and P values generated using Wilcoxon's test.ResultsThe overall response rate was 100%. Alpha values for all WOMAC subscales exceeded the value of 0.70 at both baseline and follow-up assessments. Frequency distributions of scores were symmetrical. Subscales had negligible floor and ceiling effects. Both pain and physical function subscales were fairly correlated with the subscales measuring similar constructs of SF-36, whereas they were weakly correlated with other dimensions of SF-36. A good correlation was obtained between WOMAC total and Lequesne index. The pain and physical function subscales of WOMAC index were the most responsive subscales.ConclusionThe Turkish WOMAC OA index is acceptable, valid, reliable and responsive for use in Turkish patients with knee OA

    Simulation of High Conversion Efficiency and Open-circuit Voltages Of {\alpha}-si/poly-silicon Solar Cell

    Full text link
    The P+ {\alpha}-Si /N+ polycrystalline solar cell is molded using the AMPS-1D device simulator to explore the new high efficiency thin film poly-silicon solar cell. In order to analyze the characteristics of this device and the thickness of N+ poly-silicon, we consider the impurity concentration in the N+ poly-silicon layer and the work function of transparent conductive oxide (TCO) in front contact in the calculation. The thickness of N+ poly-silicon has little impact on the device when the thickness varies from 20 {\mu}m to 300 {\mu}m. The effects of impurity concentration in polycrystalline are analyzed. The conclusion is drawn that the open-circuit voltage (Voc) of P+ {\alpha}-Si /N+ polycrystalline solar cell is very high, reaching 752 mV, and the conversion efficiency reaches 9.44%. Therefore, based on the above optimum parameters the study on the device formed by P+ {\alpha}-Si/N+ poly-silicon is significant in exploring the high efficiency poly-silicon solar cell.Comment: 8 pages 6figures, 1 table

    Analysis of Granular Flow in a Pebble-Bed Nuclear Reactor

    Full text link
    Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6cm-diameter spheres draining in a cylindrical vessel of diameter 3.5m and height 10m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.Comment: 18 pages, 21 figure

    A stochastic flow rule for granular materials

    Full text link
    There have been many attempts to derive continuum models for dense granular flow, but a general theory is still lacking. Here, we start with Mohr-Coulomb plasticity for quasi-2D granular materials to calculate (average) stresses and slip planes, but we propose a "stochastic flow rule" (SFR) to replace the principle of coaxiality in classical plasticity. The SFR takes into account two crucial features of granular materials - discreteness and randomness - via diffusing "spots" of local fluidization, which act as carriers of plasticity. We postulate that spots perform random walks biased along slip-lines with a drift direction determined by the stress imbalance upon a local switch from static to dynamic friction. In the continuum limit (based on a Fokker-Planck equation for the spot concentration), this simple model is able to predict a variety of granular flow profiles in flat-bottom silos, annular Couette cells, flowing heaps, and plate-dragging experiments -- with essentially no fitting parameters -- although it is only expected to function where material is at incipient failure and slip-lines are inadmissible. For special cases of admissible slip-lines, such as plate dragging under a heavy load or flow down an inclined plane, we postulate a transition to rate-dependent Bagnold rheology, where flow occurs by sliding shear planes. With different yield criteria, the SFR provides a general framework for multiscale modeling of plasticity in amorphous materials, cycling between continuum limit-state stress calculations, meso-scale spot random walks, and microscopic particle relaxation

    Catching up with Method and Process Practice: An Industry-Informed Baseline for Researchers

    Get PDF
    Software development methods are usually not applied by the book.companies are under pressure to continuously deploy software products that meet market needs and stakeholders\u27 requests. To implement efficient and effective development processes, companies utilize multiple frameworks, methods and practices, and combine these into hybrid methods. A common combination contains a rich management framework to organize and steer projects complemented with a number of smaller practices providing the development teams with tools to complete their tasks. In this paper, based on 732 data points collected through an international survey, we study the software development process use in practice. Our results show that 76.8% of the companies implement hybrid methods.company size as well as the strategy in devising and evolving hybrid methods affect the suitability of the chosen process to reach company or project goals. Our findings show that companies that combine planned improvement programs with process evolution can increase their process\u27 suitability by up to 5%

    Signatures of granular microstructure in dense shear flows

    Full text link
    Granular materials react to shear stresses differently than do ordinary fluids. Rather than deforming uniformly, materials such as dry sand or cohesionless powders develop shear bands: narrow zones containing large relative particle motion leaving adjacent regions essentially rigid[1,2,3,4,5]. Since shear bands mark areas of flow, material failure and energy dissipation, they play a crucial role for many industrial, civil engineering and geophysical processes[6]. They also appear in related contexts, such as in lubricating fluids confined to ultra-thin molecular layers[7]. Detailed information on motion within a shear band in a three-dimensional geometry, including the degree of particle rotation and inter-particle slip, is lacking. Similarly, only little is known about how properties of the individual grains - their microstructure - affect movement in densely packed material[5]. Combining magnetic resonance imaging, x-ray tomography, and high-speed video particle tracking, we obtain the local steady-state particle velocity, rotation and packing density for shear flow in a three-dimensional Couette geometry. We find that key characteristics of the granular microstructure determine the shape of the velocity profile.Comment: 5 pages, incl. 4 figure

    Segregation and mixing of granular material in industrial processes

    Get PDF
    Within the EU-funded PARDEM network mixing and segregation are studied in silos and heaps, agitated mixers and fluidized beds. A method is presented with which mixing and segregation can be characterized, adapted for quasi-static to dynamic systems and applied at the global system level as well as at the local level. This paper attempts to give an overview of the applicability of this analysis by providing three instances, being chute flow representing flow down a heap, agitated mixing and fluidization, in which the method is applied

    CENGO: a web-based serious game to increase the programming knowledge levels of computer engineering students

    Get PDF
    In recent years, games are used to increase the level of knowledge and experience of individuals working in different domains. Especially in the education field, there are several different serious games to teach the subjects of the lectures or other educational materials to students in an enjoyable way. Hence, this study proposes a quantitative research approach to increase the programming knowledge levels of the first-year undergraduate students at computer engineering departments. For this aim, a responsive web platform was developed to teach the syntax and logic of C programming language by using some game elements. Therefore, the students have a chance to repeat the topics related to C programming language continuously since the platform is always accessible. To figure out the efficiency of the designed environment, 10 first-year computer engineering students were selected. According to the results obtained from the user tests, this game can be used as an educational tool, which supports the traditional training methods, to increase the knowledge levels of students about the syntax and logic of C programming language

    In the eye of the beholder:promoting learner-centric design to develop mobile games for learning

    Get PDF
    Out of the project EMuRgency a game-based learning environment evolved, which trains school children in providing reanimation and cardiopulmonary resuscitation (CPR). The application gets players to act as if they were in a real case of emergency. This paper reports on a formal usability study conducted with two different groups of learners, regular learners and learners with special educational needs (SEN). With the study we compared the two groups of learners with regard to game usability and effectiveness of the intervention. Our intention was to better understand the different needs and requirements to learning materials that game designer need to take into consideration in order to make the learning experience successful for both groups. A total of 89 children played the game simulation. Results showed differences in perception and effectiveness of individual mechanisms for the two groups with regard to usability or switching between tasks and mobile device.This publication was partly financed by the European Regional Development Fund (ERDF), regions of the Euregio Meuse-Rhine and the participating institutions under the INTERREG IVa program (EMR.INT4-1.2.-2011-04/070, http://www.emurgency.eu)
    corecore