265 research outputs found

    <i>Lactobacillus reuteri</i> reduces bone loss in older women with low bone mineral density:a randomized, placebo-controlled, double-blind, clinical trial

    Get PDF
    Background: The importance of the gut microbiome for bone metabolism in mice has recently been demonstrated, but no studies are available in humans. Lactobacillus reuteri ATCCPTA 6475 (L. reuteri 6475) has been reported to increase bone mineral density (BMD) in mice but its effect on the human skeleton is unknown. The objective of this trial was to investigate if L. reuteri 6475 affects bone loss in older women with low BMD. Methods: In this double‐blind, placebo‐controlled study, women from the population who were 75 to 80 years old and had low BMD were randomized to orally receive 1010 colony‐forming units of L. reuteri 6475 daily or placebo. The predefined primary end‐point was relative change after 12 months in tibia total volumetric BMD (vBMD). Results: Ninety women were included and 70 completed the study. L. reuteri 6475 reduced loss of total vBMD compared to placebo both in the intention‐to‐treat (ITT) analysis [−0.83% (95% confidence interval [CI], −1.47 to −0.19%) vs. −1.85% (95% CI, −2.64 to −1.07%); mean difference 1.02% (95% CI, 0.02–2.03)] and per protocol analysis [−0.93% (95% CI, −1.45 to −0.40) vs. −1.86% (95% CI, −2.35 to −1.36); mean difference 0.93% (95% CI, 0.21–1.65)]. In general, similar but smaller effects were observed in the secondary bone variable outcomes, but these differences did not reach statistical significance in the ITT population. Adverse events did not differ between groups. Conclusions: Supplementation with L. reuteri 6475 should be further explored as a novel approach to prevent age‐associated bone loss and osteoporosis

    Bone material strength is associated with areal BMD but not with prevalent fractures in older women

    Get PDF
    Reference point indentation is a novel method to assess bone material strength index (BMSi) in vivo. We found that BMSi at the mid-tibia was weakly associated with spine and hip areal bone mineral density but not with prevalent fracture in a population-based cohort of 211 older women. Reference point indentation is a novel method to assess BMSi in vivo. Lower BMSi has been observed in patients with prior fracture than in controls, but no association between BMSi and areal bone mineral density (aBMD) has been found. Population-based association studies and prospective studies with BMSi and fractures are lacking. We hypothesized that BMSi would be associated with prevalent fractures in older Swedish women. The aim was to investigate the associations between BMSi, aBMD, and prevalent fracture in older women. Two hundred eleven women, mean age 78.3 ± 1.1 years, were included in this cross-sectional, population-based study. BMSi was assessed using the OsteoProbe device at the mid-tibia. Areal BMD of the hip, spine, and non-dominant radius was measured using dual-energy X-ray absorptiometry (DXA). Fracture history was retrieved using questionnaires, and vertebral fractures were identified using vertebral fracture assessment (VFA) by DXA. One hundred ninety-eight previous fractures in 109 subjects were reported. A total of 106 women had a vertebral fracture, of which 58 women had moderate or severe fractures. An inverse correlation between BMSi and weight (r = −0.14, p = 0.04) was seen, and BMSi differed according to operator (ANOVA p < 0.01). Adjusting for weight and operator in a linear regression model, we found that BMSi was positively associated with aBMD of the total hip (ÎČ = 0.14, p = 0.04), non-dominant radius (ÎČ = 0.17, p = 0.02), and lumbar spine (L1-L4) (ÎČ = 0.14, p < 0.05). Using logistic regression, we could not find any association in crude or adjusted BMSi (for age, weight, height, walking speed, calcium intake, smoking, bisphosphonate and glucocorticoid use, and operator) with prevalent fractures. We conclude that BMSi is associated with aBMD but not with prevalent fracture in a population-based cohort of 211 older women

    Stress Impairs Skin Barrier Function and Induces α2-3 Linked N-Acetylneuraminic Acid and Core 1 O-Glycans on Skin Mucins in Atlantic Salmon, Salmo salar

    Get PDF
    The skin barrier consists of mucus, primarily comprising highly glycosylated mucins, and the epithelium. Host mucin glycosylation governs interactions with pathogens and stress is associated with impaired epithelial barrier function. We characterized Atlantic salmon skin barrier function during chronic stress (high density) and mucin O-glycosylation changes in response to acute and chronic stress. Fish held at low (LD: 14–30 kg/m3) and high densities (HD: 50-80 kg/m3) were subjected to acute stress 24 h before sampling at 17 and 21 weeks after start of the experiment. Blood parameters indicated primary and secondary stress responses at both sampling points. At the second sampling, skin barrier function towards molecules was reduced in the HD compared to the LD group (Papp mannitol; p < 0.01). Liquid chromatography–mass spectrometry revealed 81 O-glycan structures from the skin. Fish subjected to both chronic and acute stress had an increased proportion of large O-glycan structures. Overall, four of the O-glycan changes have potential as indicators of stress, especially for the combined chronic and acute stress. Stress thus impairs skin barrier function and induces glycosylation changes, which have potential to both affect interactions with pathogens and serve as stress indicators. View Full-TextpublishedVersio

    Prevalence and severity of cardiac abnormalities and arteriosclerosis in farmed rainbow trout (Oncorhynchus mykiss)

    Get PDF
    Cardiovascular disease may pose a major threat to the health and welfare of farmed fish. By investigating a range of established cardiovascular disease indicators, we aimed to determine the prevalence, severity and consequences of this affliction in farmed rainbow trout (Oncorhynchus mykiss) from an open cage farm in the Baltic Sea, an open cage farm in a freshwater lake, and a land-based recirculating aquaculture system. We also aimed to identify environmental, anthropogenic and physiological factors contributing towards the development of the disease. The majority of trout possessed enlarged hearts with rounded ventricles (mean height:width ratios of 1.0-1.1 c.f. similar to 1.3 in wild fish) and a high degree of vessel misalignment (mean angles between the longitudinal ventricular axis and the axis of the bulbus arteriosus of 28-31 degrees c.f. similar to 23 degrees in wild fish). The prevalence and severity of coronary arteriosclerosis was also high, as 92-100% of fish from the different aquaculture facilities exhibited coronary lesions. Mean lesion incidence and severity indices were 67-95% and 3.1-3.9, respectively, which resulted in mean coronary arterial blockages of 19-32%. To evaluate the functional significance of these findings, we modelled the effects of arterial blockages on coronary blood flow and experimentally tested the effects of coronary occlusion in a sub-sample of fish. The observed coronary blockages were estimated to reduce coronary blood flow by 34-54% while experimental coronary occlusion adversely affected the electrocardiogram of trout. Across a range of environmental (water current, predation), anthropogenic (boat traffic intensity, hatchery of origin, brand of feed pellets) and physiological factors (condition factor, haematological and plasma indices), the hatchery of origin was the main factor contributing towards the observed variation in the development of cardiovascular disease. Therefore, further research on the effects of selective breeding programs and rearing strategies on the development of cardiovascular disease is needed to improve the welfare and health of farmed fish

    Development of a novel method to measure bone marrow fat fraction in older women using high-resolution peripheral quantitative computed tomography

    Get PDF
    Bone marrow adipose tissue (BMAT) has been implicated in a number of conditions associated with bone deterioration and osteoporosis. Several studies have found an inverse relationship between BMAT and bone mineral density (BMD), and higher levels of BMAT in those with prevalent fracture. Magnetic resonance imaging (MRI) is the gold standard for measuring BMAT, but its use is limited by high costs and low availability. We hypothesized that BMAT could also be accurately quantified using high-resolution peripheral quantitative computed tomography (HR-pQCT). Methods: In the present study, a novel method to quantify the tibia bone marrow fat fraction, defined by MRI, using HR-pQCT was developed. In total, 38 postmenopausal women (mean [standard deviation] age 75.9 [3.1] years) were included and measured at the same site at the distal (n = 38) and ultradistal (n = 18) tibia using both MRI and HR-pQCT. To adjust for partial volume effects, the HR-pQCT images underwent 0 to 10 layers of voxel peeling to remove voxels adjacent to the bone. Linear regression equations were then tested for different degrees of voxel peeling, using the MRI-derived fat fractions as the dependent variable and the HR-pQCT-derived radiodensity as the independent variables. Results: The most optimal HR-pQCT derived model, which applied a minimum of 4 layers of peeled voxel and with more than 1% remaining marrow volume, was able to explain 76% of the variation in the ultradistal tibia bone marrow fat fraction, measured with MRI (p &lt; 0.001). Conclusion: The novel HR-pQCT method, developed to estimate BMAT, was able to explain a substantial part of the variation in the bone marrow fat fraction and can be used in future studies investigating the role of BMAT in osteoporosis and fracture prediction

    Management Effects on Greenhouse Gas Dynamics in Fen Ditches

    Get PDF
    Globally, large areas of peatland have been drained through the digging of ditches, generally to increase agricultural production. By lowering the water table it is often assumed that drainage reduces landscape-scale emissions of methane (CH4) into the atmosphere to negligible levels. However, drainage ditches themselves are known to be sources of CH4 and other greenhouse gases (GHGs), but emissions data are scarce, particularly for carbon dioxide (CO2) and nitrous oxide (N2O), and show high spatial and temporal variability. Here, we report dissolved GHGs and diffusive fluxes of CH4 and CO2 from ditches at three UK lowland fens under different management; semi-natural fen, cropland, and cropland restored to low-intensity grassland. Ditches at all three fens emitted GHGs to the atmosphere, but both fluxes and dissolved GHGs showed extensive variation both seasonally and within-site. CH4 fluxes were particularly large, with medians peaking at all three sites in August at 120-230 mg m-2 d-1. Significant between site differences were detected between the cropland and the other two sites for CO2 flux and all three dissolved GHGs, suggested that intensive agriculture has major effects on ditch biogeochemistry. Multiple regression models using environmental and water chemistry data were able to explain 29-59% of observed variation in dissolved GHGs. Annual CH4 fluxes from the ditches were 37.8, 18.3 and 27.2 g CH4 m-2 yr-1 for the semi-natural, grassland and cropland, and annual CO2 fluxes were similar (1100 to 1440 g CO2 m-2 yr-1) among sites. We suggest that fen ditches are important contributors to landscape-scale GHG emissions, particularly for CH4. Ditch emissions should be included in GHG budgets of human modified fens, particularly where drainage has removed the original terrestrial CH4 source, e.g. agricultural peatlands

    Update of the list of qualified presumption of safety (QPS) recommended microorganisms intentionally added to food or feed as notified to EFSA

    Get PDF
    The qualified presumption of safety (QPS) provides a generic pre-assessment of the safety ofmicroorganisms intended for use in the food or feed chains, to support the work of EFSA’s ScientificPanels. QPS assessment allows a fast track evaluation of strains belonging to QPS taxonomic units(TUs): species for bacteria, yeast, fungi, protists/microalgae and families for viruses. QPS TUs areassessed for their body of knowledge and safety. Safety concerns related to a QPS TU are reflected,when possible, as‘qualifications’, which should be tested at strain and/or product level. Based on thepossession of potentially harmful traits by some strains,filamentous fungi, bacteriophages, oomycetes,streptomycetes,Enterococcus faecium,Escherichia coliandClostridium butyricumare excluded fromthe QPS assessment.Between October 2019 and September 2022, 323 notifications of TUs werereceived, 217 related to feed additives, 54 to food enzymes, food additives andflavourings, 14 to plantprotection products and 38 to novel foods. The list of QPS-recommended TUs is reviewed every6 months following an extensive literature search strategy. Only sporadic infections with a few QPSstatus TUs in immunosuppressed individuals were identified and the assessment did not change theQPS status of these TUs. The QPS list has been updated in relation to the most recent taxonomicinsights and the qualifications were revised and streamlined. The qualification‘absence ofaminoglycoside production ability’was withdrawn forBacillus velezensis. Six new TUs received the QPSstatus:Bacillus paralicheniformiswith the qualification‘absence of toxigenic activity’and‘absence ofbacitracin production ability’;Bacillus circulanswith the qualifications for‘production purposes only’and‘absence of cytotoxic activity’;Haematococcus lacustris(synonymHaematococcus pluvialis) andOgataea polymorpha, both with the qualification‘for production purposes only’;Lactiplantibacillusargentoratensis;Geobacillus thermodenitrificanswith the qualification‘absence of toxigenic activity

    Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 12: suitability of taxonomic units notified to EFSA until March 2020

    Get PDF
    The qualified presumption of safety (QPS) was developed to provide a generic safety evaluation for biological agents to support EFSA's Scientific Panels. It is based on an assessment of the taxonomic identity, the body of knowledge, safety concerns and antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are where possible to be confirmed at strain or product level, reflected by \u2018qualifications\u2019. No new information was found that would change the previously recommended QPS TUs of the 39 microorganisms notified to EFSA between October 2019 and March 2020, 33 were excluded, including five filamentous fungi, five Escherichia coli, two Enterococcus faecium, two Streptomyces spp. and 19 TUs already evaluated. Six TUs were evaluated. Akkermansia muciniphila was not recommended for QPS status due to safety concerns. Clostridium butyricum was not recommended because some strains contain pathogenicity factors. This TU was excluded for further QPS evaluation. Galdieria sulphuraria and Pseudomonas chlororaphis were also rejected due to a lack of body of knowledge. The QPS status of Corynebacterium ammoniagenes (with the qualification \u2018for production purposes only\u2019) and of Komagataella pastoris (with the qualification \u2018for enzyme production\u2019) was confirmed. In relation to the taxonomic revision of the Lactobacillus genus, previously designated Lactobacillus species will be reassigned to the new species and both the old and new names will be retained in the QPS list

    Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 15: suitability of taxonomic units notified to EFSA until September 2021

    Get PDF
    The qualified presumption of safety (QPS) approach was developed to provide a generic pre-evaluation of the safety of biological agents. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns are, where possible, confirmed at the species/strain or product level and reflected by ‘qualifications’. The QPS list was updated in relation to the revised taxonomy of the genus Bacillus, to synonyms of yeast species and for the qualifications ‘absence of resistance to antimycotics’ and ‘only for production purposes’. Lactobacillus cellobiosus has been reclassified as Limosilactobacillus fermentum. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS taxonomic units (TU)s. Of the 70 microorganisms notified to EFSA, 64 were not evaluated: 11 filamentous fungi, one oomycete, one Clostridium butyricum, one Enterococcus faecium, five Escherichia coli, one Streptomyces sp., one Bacillus nakamurai and 43 TUs that already had a QPS status. Six notifications, corresponding to six TUs were evaluated: Paenibacillus lentus was reassessed because an update was requested for the current mandate. Enterococcus lactis synonym Enterococcus xinjiangensis, Aurantiochytrium mangrovei synonym Schizochytrium mangrovei, Schizochytrium aggregatum, Chlamydomonas reinhardtii synonym Chlamydomonas smithii and Haematococcus lacustris synonym Haematococcus pluvialis were assessed for the first time. The following TUs were not recommended for QPS status: P. lentus due to a limited body of knowledge, E. lactis synonym E. xinjiangensis due to potential safety concerns, A. mangrovei synonym S. mangrovei, S. aggregatum and C. reinhardtii synonym C. smithii, due to lack of a body of knowledge on its occurrence in the food and feed chain. H. lacustris synonym H. pluvialis is recommended for QPS status with the qualification ‘for production purposes only’
    • 

    corecore