191 research outputs found

    Use of a bacterial hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa transformation

    Get PDF
    Dominant transformation markers allow maximum flexibility in the choice of transformation recipients

    Screening by symmetry of long-range hydrodynamic interactions of polymers confined in sheets

    Full text link
    Hydrodynamic forces may significantly affect the motion of polymers. In sheet-like cavities, such as the cell's cytoplasm and microfluidic channels, the hydrodynamic forces are long-range. It is therefore expected that that hydrodynamic interactions will dominate the motion of polymers in sheets and will be manifested by Zimm-like scaling. Quite the opposite, we note here that although the hydrodynamic forces are long-range their overall effect on the motion of polymers vanishes due to the symmetry of the two-dimensional flow. As a result, the predicted scaling of experimental observables such as the diffusion coefficient or the rotational diffusion time is Rouse-like, in accord with recent experiments. The effective screening validates the use of the non-interacting blobs picture for polymers confined in a sheet.Comment: http://www.weizmann.ac.il/complex/tlusty/papers/Macromolecules2006.pdf http://pubs.acs.org/doi/abs/10.1021/ma060251

    Discrete cilia modelling with singularity distributions

    Get PDF
    We discuss in detail techniques for modelling flows due to finite and infinite arrays of beating cilia. An efficient technique, based on concepts from previous ‘singularity models’ is described, that is accurate in both near and far-fields. Cilia are modelled as curved slender ellipsoidal bodies by distributing Stokeslet and potential source dipole singularities along their centrelines, leading to an integral equation that can be solved using a simple and efficient discretisation. The computed velocity on the cilium surface is found to compare favourably with the boundary condition. We then present results for two topics of current interest in biology. 1) We present the first theoretical results showing the mechanism by which rotating embryonic nodal cilia produce a leftward flow by a ‘posterior tilt,’ and track particle motion in an array of three simulated nodal cilia. We find that, contrary to recent suggestions, there is no continuous layer of negative fluid transport close to the ciliated boundary. The mean leftward particle transport is found to be just over 1 μm/s, within experimentally measured ranges. We also discuss the accuracy of models that represent the action of cilia by steady rotlet arrays, in particular, confirming the importance of image systems in the boundary in establishing the far-field fluid transport. Future modelling may lead to understanding of the mechanisms by which morphogen gradients or mechanosensing cilia convert a directional flow to asymmetric gene expression. 2) We develop a more complex and detailed model of flow patterns in the periciliary layer of the airway surface liquid. Our results confirm that shear flow of the mucous layer drives a significant volume of periciliary liquid in the direction of mucus transport even during the recovery stroke of the cilia. Finally, we discuss the advantages and disadvantages of the singularity technique and outline future theoretical and experimental developments required to apply this technique to various other biological problems, particularly in the reproductive system

    Characterization of the Temperature-Sensitive Mutations un-7 and png-1 in Neurospora crassa

    Get PDF
    The model filamentous fungus Neurospora crassa has been studied for over fifty years and many temperature-sensitive mutants have been generated. While most of these have been mapped genetically, many remain anonymous. The mutation in the N. crassa temperature-sensitive lethal mutant un-7 was identified by a complementation based approach as being in the open reading frame designated NCU00651 on linkage group I. Other mutations in this gene have been identified that lead to a temperature-sensitive morphological phenotype called png-1. The mutations underlying un-7 result in a serine to phenylalanine change at position 273 and an isoleucine to valine change at position 390, while the mutation in png-1 was found to result in a serine to leucine change at position 279 although there were other conservative changes in this allele. The overall morphology of the strain carrying the un-7 mutation is compared to strains carrying the png-1 mutation and these mutations are evaluated in the context of other temperature-sensitive mutants in Neurospora

    Sex in the PAC: A hidden affair in dark septate endophytes?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fungi are asexually and sexually reproducing organisms that can combine the evolutionary advantages of the two reproductive modes. However, for many fungi the sexual cycle has never been observed in the field or <it>in vitro </it>and it remains unclear whether sexual reproduction is absent or cryptic. Nevertheless, there are indirect approaches to assess the occurrence of sex in a species, such as population studies, expression analysis of genes involved in mating processes and analysis of their selective constraints. The members of the <it>Phialocephala fortinii </it>s. l. - <it>Acephala applanata </it>species complex (PAC) are ascomycetes and the predominant dark septate endophytes that colonize woody plant roots. Despite their abundance in many ecosystems of the northern hemisphere, no sexual state has been identified to date and little is known about their reproductive biology, and how it shaped their evolutionary history and contributes to their ecological role in forest ecosystems. We therefore aimed at assessing the importance of sexual reproduction by indirect approaches that included molecular analyses of the mating type (<it>MAT</it>) genes involved in reproductive processes.</p> <p>Results</p> <p>The study included 19 PAC species and > 3, 000 strains that represented populations from different hosts, continents and ecosystems. Whereas <it>A. applanata </it>had a homothallic (self-fertile) <it>MAT </it>locus structure, all other species were structurally heterothallic (self-sterile). Compatible mating types were observed to co-occur more frequently than expected by chance. Moreover, in > 80% of the populations a 1:1 mating type ratio and gametic equilibrium were found. <it>MAT </it>genes were shown to evolve under strong purifying selection.</p> <p>Conclusions</p> <p>The signature of sex was found in worldwide populations of PAC species and functionality of <it>MAT </it>genes is likely preserved by purifying selection. We hypothesize that cryptic sex regularely occurs in the PAC and that further field studies and <it>in vitro </it>crosses will lead to the discovery of the sexual state. Although structurally heterothallic species prevail, it cannot be excluded that homothallism represents the ancestral breeding system in the PAC.</p

    A Theoretical Model of a Molecular-Motor-Powered Pump

    Full text link
    The motion of a cylindrical bead in a fluid contained within a two-dimensional channel is investigated using the boundary element method as a model of a biomolecular-motor-powered microfluidics pump. The novelty of the pump lies in the use of motor proteins (kinesin) to power the bead motion and the few moving parts comprising the pump. The performance and feasibility of this pump design is investigated using two model geometries: a straight channel, and a curved channel with two concentric circular walls. In the straight channel geometry, it is shown that increasing the bead radius relative to the channel width, increases the flow rate at the expense of increasing the force the kinesins must generate in order to move the bead. Pump efficiency is generally higher for larger bead radii, and larger beads can support higher imposed loads. In the circular channel geometry, it is shown that bead rotation modifies the force required to move the bead and that shifting the bead inward slightly reduces the required force. Bead rotation has a minimal effect on flow rate. Recirculation regions, which can develop between the bead and the channel walls, influence the stresses and force on the bead. These results suggest this pump design is feasible, and the kinesin molecules provide sufficient force to deliver pico- to atto- l/s flows.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44478/1/10544_2005_Article_6168.pd
    corecore