341 research outputs found

    Augmented inertial response of Multi-Level Converters using internal energy storage

    No full text
    During the recent years, the number of High Voltage Direct Current (HVDC) links, used for accommodating renewable energy sources and for interconnecting different power systems, has increased significantly. Apart from enhancing system stability, HVDC links can be used to provide ancillary services, such as frequency support. This paper investigates the potential of the energy storage capability of Modular Multi-level Converters (MMCs) to contribute to the frequency response. MMCs provide fast released energy through their cells capacitor that may be used to improve the system inertial response during the fault transient after a loss of generation event. To assess the effect of the converter energy storage capability, a mixed AC and DC transmission platform is developed in PowerFactory. It consists of a multi-machine system including a point-to-point MMC based HVDC link. A generation outage is applied to investigate the contribution of the MMC energy storage capability to the frequency recovery

    Successful Dendrimer and Liposome-Based Strategies to Solubilize an Antiproliferative Pyrazole Otherwise Not Clinically Applicable

    Get PDF
    Water-soluble formulations of the pyrazole derivative 3-(4-chlorophenyl)-5-(4-nitrophenylamino)-1H-pyrazole-4-carbonitrile (CR232), which were proven to have in vitro antiproliferative effects on different cancer cell lines, were prepared by two diverse nanotechnological approaches. Importantly, without using harmful organic solvents or additives potentially toxic to humans, CR232 was firstly entrapped in a biodegradable fifth-generation dendrimer containing lysine (G5K). CR232-G5K nanoparticles (CR232-G5K NPs) were obtained with high loading (DL%) and encapsulation efficiency (EE%), which showed a complex but quantitative release profile governed by Weibull kinetics. Secondly, starting from hydrogenated soy phosphatidylcholine and cholesterol, we prepared biocompatible CR232-loaded liposomes (CR232-SUVs), which displayed DL% and EE% values increasing with the increase in the lipids/CR232 ratio initially adopted and showed a constant prolonged release profile ruled by zero-order kinetics. When relevant, attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR) and nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscopy (SEM) and dynamic light scattering (DLS) experiments, as well as potentiometric titrations completed the characterization of the prepared NPs. CR232-G5K NPs were 2311-fold more water-soluble than the pristine CR232, and the CR232-SUVs with the highest DL% were 1764-fold more soluble than the untreated CR232, thus establishing the success of both our strategies

    The waveform similarity approach to identify dependent events in instrumental seismic catalogues

    Get PDF
    In this paper, waveform similarity analysis is adapted and implemented in a declustering procedure to identify foreshocks and aftershocks, to obtain instrumental catalogues that are cleaned of dependent events and to perform an independent check of the results of traditional declustering techniques. Unlike other traditional declustering methods (i.e. windowing techniques), the application of cross-correlation analysis allows definition of groups of dependent events (multiplets) characterized by similar location, fault mechanism and propagation pattern. In this way the chain of intervening related events is led by the seismogenetic features of earthquakes. Furthermore, a time-selection criterion is used to define time-independent seismic episodes eventually joined (on the basis of waveform similarity) into a single multiplet. The results, obtained applying our procedure to a test data set, show that the declustered catalogue is drawn by the Poisson distribution with a degree of confidence higher than using the Gardner and Knopoff method. The declustered catalogues, applying these two approaches, are similar with respect to the frequency–magnitude distribution and the number of earthquakes. Nevertheless, the application of our approach leads to declustered catalogues properly related to the seismotectonic background and the reology of the investigated area and the success of the procedure is ensured by the independence of the results on estimated location errors of the events collected in the raw catalogue

    On-site earthquake early warning: a partially non-ergodic perspective from the site effects point of view

    Get PDF
    We introduce in the on-site earthquake early warning (EEW) a partially non-ergodic perspective from the site effects point of view. We consider the on-site EEW approach where the peak ground velocity (PGV) for S waves is predicted from an early estimate, over the P waves, of either the peak-displacement (PD) or cumulative squared velocity (IV2). The empirical PD-PGV and IV2-PGV relationships are developed by applying a mixed-effect regression where the site-specific modifications of ground shaking are treated as random effects. We considered a large data set composed of almost 31 000 selected recordings in central Italy, a region struck by four earthquakes with magnitude between 6 and 6.5 since the 2009 L’Aquila earthquake. We split the data set into three subsets used for calibrating and validating the on-site EEW models, and for exemplifying their application to stations installed after the calibration phase. We show that the partially non-ergodic models improve the accuracy of the PGV predictions with respect to ergodic models derived for other regions of the world. Moreover, considering PD and accounting for site effects, we reduce the (apparent) aleatory variability of the logarithm of PGV from 0.31 to 0.36, typical values for ergodic on-site EEW models, to about 0.25. Interestingly, a lower variability of 0.15 is obtained by considering IV2 as proxy, which suggests further consideration of this parameter for the design of on-site EEW systems. Since being site-specific is an inherent characteristic of on-site EEW applications, the improved accuracy and precision of the PGV predicted for a target protection translate in a better customization of the alert protocols for automatic actions

    Detecting long-lasting transients of earthquake activity on a fault system by monitoring apparent stress, ground motion and clustering

    Get PDF
    Damaging earthquakes result from the evolution of stress in the brittle upper-crust, but the understanding of the mechanics of faulting cannot be achieved by only studying the large ones, which are rare. Considering a fault as a complex system, microearthquakes allow to set a benchmark in the system evolution. Here, we investigate the possibility to detect when a fault system starts deviating from a predefined benchmark behavior by monitoring the temporal and spatial variability of different micro-and-small magnitude earthquakes properties. We follow the temporal evolution of the apparent stress and of the event-specific residuals of ground shaking. Temporal and spatial clustering properties of microearthquakes are monitored as well. We focus on a fault system located in Southern Italy, where the Mw 6.9 Irpinia earthquake occurred in 1980. Following the temporal evolution of earthquakes parameters and their time-space distribution, we can identify two long-lasting phases in the seismicity patterns that are likely related to high pressure fluids in the shallow crust, which were otherwise impossible to decipher. Monitoring temporal and spatial variability of micro-to-small earthquakes source parameters at near fault observatories can have high potential as tool for providing us with new understanding of how the machine generating large earthquakes works

    An automatically generated high-resolution earthquake catalogue for the 2016–2017 Central Italy seismic sequence, including P and S phase arrival times

    Get PDF
    The 2016–2017 central Italy earthquake sequence began with the first main shock near the town of Amatrice on August 24 (Mw 6.0), and was followed by two subsequent large events near Visso on October 26 (Mw 5.9) and Norcia on October 30 (Mw 6.5), plus a cluster of four events with Mw > 5.0 within few hours on 18 January 2017. The affected area had been monitored before the sequence started by the permanent Italian National Seismic Network (RSNC), and was enhanced during the sequence by temporary stations deployed by the National Institute of Geophysics and Volcanology and the British Geological Survey. By the middle of September, there was a dense network of 155 stations, with a mean separation in the epicentral area of 6–10 km, comparable to the most likely earthquake depth range in the region. This network configuration was kept stable for an entire year, producing 2.5 TB of continuous waveform recordings. Here we describe how this data was used to develop a large and comprehensive earthquake catalogue using the Complete Automatic Seismic Processor (CASP) procedure. This procedure detected more than 450 000 events in the year following the first main shock, and determined their phase arrival times through an advanced picker engine (RSNI-Picker2), producing a set of about 7 million P- and 10 million S-wave arrival times. These were then used to locate the events using a non-linear location (NLL) algorithm, a 1-D velocity model calibrated for the area, and station corrections and then to compute their local magnitudes (ML). The procedure was validated by comparison of the derived data for phase picks and earthquake parameters with a handpicked reference catalogue (hereinafter referred to as ‘RefCat’). The automated procedure takes less than 12 hr on an Intel Core-i7 workstation to analyse the primary waveform data and to detect and locate 3000 events on the most seismically active day of the sequence. This proves the concept that the CASP algorithm can provide effectively real-time data for input into daily operational earthquake forecasts, The results show that there have been significant improvements compared to RefCat obtained in the same period using manual phase picks. The number of detected and located events is higher (from 84 401 to 450 000), the magnitude of completeness is lower (from ML 1.4 to 0.6), and also the number of phase picks is greater with an average number of 72 picked arrival for a ML = 1.4 compared with 30 phases for RefCat using manual phase picking. These propagate into formal uncertainties of ±0.9 km in epicentral location and ±1.5 km in depth for the enhanced catalogue for the vast majority of the events. Together, these provide a significant improvement in the resolution of fine structures such as local planar structures and clusters, in particular the identification of shallow events occurring in parts of the crust previously thought to be inactive. The lower completeness magnitude provides a rich data set for development and testing of analysis techniques of seismic sequences evolution, including real-time, operational monitoring of b-value, time-dependent hazard evaluation and aftershock forecasting

    Empirical Ground-Motion Prediction Equations for Northern Italy Using Weak- and Strong-Motion Amplitudes, Frequency Content, and Duration Parameters

    Get PDF
    The goals of this work are to review the Northern-Italy ground-motion prediction equations (GMPEs) for amplitude parameters and to propose new GMPEs for frequency content and duration parameters. Approximately 10,000 weak and strong waveforms have been collected merging information from different neighboring regional seismic networks operating in the last 30 yr throughout Northern Italy. New ground-motion models, calibrated for epicentral distances ≤100 km and for both local (ML) and moment magnitude (Mw), have been developed starting from a high quality dataset (624 waveforms) that consists of 82 selected earthquakes with ML and Mw up to 6.3 and 6.5, respectively. The vertical component and the maximum of the two horizontal components of motion have been considered, for both acceleration (peak ground horizontal acceleration [PGHA] and peak ground vertical acceleration [PGVA]) and velocity (peak ground horizontal velocity [PGHV] and peak ground vertical velocity [PGVV]) data. In order to make comparisons with the most commonly used prediction equations for the Italian territory (Sabetta and Pugliese, 1996 [hereafter, SP96] and Ambraseys et al. 2005a,b [hereafter, AM05]) the coefficients for acceleration response spectra (spectral horizontal acceleration [SHA] and spectral vertical acceleration [SVA]) and for pseudovelocity response spectra (pseudospectral horizontal velocity [PSHV] and pseudospectral vertical velocity [PSVV]) have been calculated for 12 periods ranging between 0.04 and 2 sec and for 14 periods ranging between 0.04 and 4 sec, respectively. Finally, empirical relations for Arias intensities (IA), Housner intensities (IH), and strong motion duration (DV) have also been calibrated. The site classification based on Eurocode (hereafter, EC8) classes has been used (ENV, 1998, 2002). The coefficients of the models have been determined using functional forms with an independent magnitude decay rate and applying the random effects model (Abrahamson and Youngs, 1992; Joyner and Boore, 1993) that allow the determination of the interevent, interstation, and record-to-record components of variance. The goodness of fit between observed and predicted values has been evaluated using the maximum likelihood approach as in Spudich et al. (1999). Comparing the proposed GMPEs with SP96 and AM05, it is possible to observe a faster decay of predicted ground motion, in particular for distances greater than 25 km and magnitudes higher than 5.0. The result is an improvement in fit of about one order of size for magnitudes spanning from 3.5 to 4.5

    Empirical ground motion prediction equations for northern italy using weak and strong motion amplitudes, frequency content and duration parameters

    Get PDF
    The aims of this work are to review the Northern-Italy ground motion prediction equations (hereinafter GMPEs) for amplitude parameters and to propose new GMPEs for frequency content and duration parameters. Approximately 10.000 weak and strong waveforms have been collected merging information from different neighbouring regional seismic networks operating in the last 30 years throughout Northern Italy. New ground motion models, calibrated for epicentral distances ≤ 100 km and for both local (Ml) and moment magnitude (Mw), have been developed starting from a high quality dataset (624 waveforms) which consists of 82 selected earthquakes with Ml and Mw up to 6.3 and 6.5 respectively. The vertical component and the maximum of the two horizontal components of motion have been considered, for both acceleration (PGHA and PGVA) and velocity (PGHV and PGVV) data. In order to make comparisons with the most commonly used prediction equations for the Italian territory (Sabetta and Pugliese, 1996 and Ambraseys et al. 2005a,b hereinafter named SP96 and AM05) the coefficients for acceleration response spectra (SHA and SVA) and for pseudo velocity response spectra (PSHV and PSVV) have been calculated for 12 periods ranging between 0.04 s and 2 s and for 14 periods ranging between 0.04 s and 4 s respectively. Finally, empirical relations for Arias and Housner Intensities (IA, IH) and strong motion duration (DV) have also been calibrated. The site classification based on Eurocode (hereinafter EC8) classes has been used (ENV, 1998). The coefficients of the models have been determined using functional forms with an independent magnitude decay rate and applying the random effects model (Abrahamson and Youngs, 1992; Joyner and Boore, 1993) that allow the determination of the inter-event, inter-station and record-to-record components of variance. The goodness of fit between observed and predicted values has been evaluated using the maximum likelihood approach as in Spudich et al. (1999). Comparing the proposed GMPEs both with SP96 and AM05 it is possible to observe a faster decay of predicted ground motion, in particular for distances greater than 25 km and magnitudes higher than 5.0. The result is a fit improvement of about one order of size for magnitudes spanning from 3.5 to 4.5

    Automated control procedures and first results from the temporary seismic monitoring of the 2012 Emilia sequence

    Get PDF
    After moderate to strong earthquakes in Italy or in the surrounding areas, the Istituto Nazionale di Geofisica e Vulcanologia (INGV; National Institute for Geophysics and Volcanology) activates a temporary seismic network infrastructure. This is devoted to integration with the Italian National Seismic Network (RSN) [Delladio 2011] in the epicentral area, thus improving the localization of the aftershocks distribution after a mainshock. This infrastructure is composed of a stand-alone, locally recording part (Re.Mo.) [Moretti et al. 2010] and a real-time telemetered part (Re.Mo.Tel.) [Abruzzese et al. 2011a, 2011b] that can stream data to the acquisition centers in Rome and Grottaminarda. After the May 20, 2012, Ml 5.9 earthquake in the Emilia region (northern Italy), the temporary network was deployed in the epicentral area; in particular, 10 telemetered and 12 stand-alone stations were installed [Moretti et al. 2012, this volume]. Using the dedicated connection between the acquisition center in Rome and the Ancona acquisition sub-center [Cattaneo et al. 2011], the signals of the real-time telemetered stations were acquired also in this sub-center. These were used for preliminary quality control, by adopting the standard procedures in use here (see next paragraph, and Monachesi et al. [2011]). The main purpose of the present study is a first report on this quality check, which should be taken into account for the correct use of these dat

    A microseismic study in a low seismicity area of Italy: the Città di Castello 2000-2001 experiment

    Get PDF
    Recent seismological studies contribute to better understand the first order characteristics of earthquake occurrence in Italy, identifying the potential sites for moderate to large size earthquakes. Ad hoc passive seismic experiments performed in these areas provide information to focus on the location and geometry of the active faults more closely. This information is relevant for assessing seismic hazard and for accurately constraining possible ground shaking scenarios. The area around the Città di Castello Basin, in the Northern Apennines (Central Italy), is characterized by the absence of instrumental seismicity (M > 2.5), it is adjacent to faults ruptured by recent and historical earthquakes. To better understand the tectonics of the area, we installed a dense network of seismic stations equipped with broadband and short period seismometers collecting data continuously for 8 months (October 2000-May 2001). The processing of ~ 900 Gbyte of data revealed a consistent background seismicity consisting of very low magnitude earthquakes (ML < 3.2). Preliminary locations of about 2200 local earthquakes show that the area can be divided into two regions with different seismic behaviour: an area to the NW, in between Sansepolcro and Città di Castello, where seismicity is not present. An area toward the SE, in between Città di Castello, Umbertide and Gubbio, where we detected a high microseismicity activity. These findings suggest a probable different mechanical behaviour of the two regions. In the latter area, the seismicity is confined between 0 and 8 km of depth revealing a rather well defined east-dipping, low angle fault 35 km wide that cuts through the entire upper crust down to 12-15 km depth. Beside an apparent structural complexity, fault plane solutions of background seismicity reveal a homogeneous pattern of deformation with a clear NE-SW extension
    • …
    corecore