47 research outputs found
A Physics-Inspired Mechanistic Model of Migratory Movement Patterns in Birds
In this paper, we introduce a mechanistic model of migratory movement patterns in birds, inspired by ideas and methods from physics. Previous studies have shed light on the factors influencing bird migration but have mainly relied on statistical correlative analysis of tracking data. Our novel method offers a bottom up explanation of population-level migratory movement patterns. It differs from previous mechanistic models of animal migration and enables predictions of pathways and destinations from a given starting location. We define an environmental potential landscape from environmental data and simulate bird movement within this landscape based on simple decision rules drawn from statistical mechanics. We explore the capacity of the model by qualitatively comparing simulation results to the non-breeding migration patterns of a seabird species, the Black-browed Albatross (). This minimal, two-parameter model was able to capture remarkably well the previously documented migration patterns of the Black-browed Albatross, with the best combination of parameter values conserved across multiple geographically separate populations. Our physics-inspired mechanistic model could be applied to other bird and highly-mobile species, improving our understanding of the relative importance of various factors driving migration and making predictions that could be useful for conservation.This work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council
A global analysis of bird plumage patterns reveals no association between habitat and camouflage
Evidence suggests that animal patterns (motifs) function in camouflage. Irregular mottled patterns can facilitate concealment when stationary in cluttered habitats, whereas regular patterns typically prevent capture during movement in open habitats. Bird plumage patterns have predominantly converged on just four types—mottled (irregular), scales, bars and spots (regular)—and habitat could be driving convergent evolution in avian patterning. Based on sensory ecology, we therefore predict that irregular patterns would be associated with visually noisy closed habitats and that regular patterns would be associated with open habitats. Regular patterns have also been shown to function in communication for sexually competing males to stand-out and attract females, so we predict that male breeding plumage patterns evolved in both open and closed habitats. Here, taking phylogenetic relatedness into account, we investigate ecological selection for bird plumage patterns across the class Aves. We surveyed plumage patterns in 80% of all avian species worldwide. Of these, 2,756 bird species have regular and irregular plumage patterns as well as habitat information. In this subset, we tested whether adult breeding/non-breeding plumages in each sex, and juvenile plumages, were associated with the habitat types found within the species’ geographical distributions. We found no evidence for an association between habitat and plumage patterns across the world’s birds and little phylogenetic signal. We also found that species with regular and irregular plumage patterns were distributed randomly across the world’s eco-regions without being affected by habitat type. These results indicate that at the global spatial and taxonomic scale, habitat does not predict convergent evolution in bird plumage patterns, contrary to the camouflage hypothesis.This research was funded by an Entente Cordiale Scholarship to M.S., a Biotechnology and Biological Sciences Research Council studentship to K.L.A.M. and the Cambridge Overseas Trust to T-L.G
Seasonal species richness of birds on the world's islands and its geographical correlates
The presence of migratory birds on islands results in seasonal variation in species richness. These patterns and their geographical correlates within the context of island biogeography theory have not been examined. We used 21 years of bird observations on 690 islands from eBird to determine how seasonal species richness estimates vary as a function of island area, isolation and latitude. Species richness was highest on islands within the northern mid-latitudes during migration and on islands within tropical latitudes during the non-breeding season. Area defined positive, nonlinear relationships with species richness across seasons, with the steepest slopes occurring with islands greater than 1100 km2. Distance to mainland defined negative, nonlinear relationships with species richness across seasons, with the strongest slopes occurring with islands located greater than 150 km from the mainland. Species-area relationships were weakest for the most remote islands and strongest for islands at intermediate distances to the mainland. Intermediate proximity to other islands was a poor predictor of species richness. Our findings emphasize the presence of seasonally dynamic geographical relationships, the enhanced role of evolutionary processes on larger islands, the unique ecology of the world's most remote islands, and the importance of islands as stopover sites and wintering grounds for migratory bird species
Scaling migrations to communities: An empirical case of migration network in the Arctic
Seasonal migrants transport energy, nutrients, contaminants, parasites and diseases, while also connecting distant food webs between communities and ecosystems, which contributes to structuring meta-communities and meta-ecosystems. However, we currently lack a framework to characterize the structure of the spatial connections maintained by all migratory species reproducing or wintering in a given community. Here, we use a network approach to represent and characterize migratory pathways at the community level and provide an empirical description of this pattern from a High-Arctic terrestrial community. We define community migration networks as multipartite networks representing different biogeographic regions connected with a focal community through the seasonal movements of its migratory species. We focus on the Bylot Island High-Arctic terrestrial community, a summer breeding ground for several migratory species. We define the non-breeding range of each species using tracking devices, or range maps refined by flyways and habitat types. We show that the migratory species breeding on Bylot Island are found across hundreds of ecoregions on several continents during the non-breeding period and present a low spatial overlap. The migratory species are divided into groups associated with different sets of ecoregions. The non-random structure observed in our empirical community migration network suggests evolutionary and geographic constraints as well as ecological factors act to shape migrations at the community level. Overall, our study provides a simple and generalizable framework as a starting point to better integrate migrations at the community level. Our framework is a far-reaching tool that could be adapted to address the seasonal transport of energy, contaminants, parasites and diseases in ecosystems, as well as trophic interactions in communities with migratory species
Macro-scale relationship between body mass and timing of bird migration
Clarifying migration timing and its link with underlying drivers is fundamental to understanding the evolution of bird migration. However, previous studies have focused mainly on environmental drivers such as the latitudes of seasonal distributions and migration distance, while the effect of intrinsic biological traits remains unclear. Here, we compile a global dataset on the annual cycle of migratory birds obtained by tracking 1531 individuals and 177 populations from 186 species, and investigate how body mass, a key intrinsic biological trait, influenced timings of the annual cycle using Bayesian structural equation models. We find that body mass has a strong direct effect on departure date from non-breeding and breeding sites, and indirect effects on arrival date at breeding and non-breeding sites, mainly through its effects on migration distance and a carry-over effect. Our results suggest that environmental factors strongly affect the timing of spring migration, while body mass affects the timing of both spring and autumn migration. Our study provides a new foundation for future research on the causes of species distribution and movement
Author Correction: Simulation-based reconstruction of global bird migration over the past 50,000 years.
An amendment to this paper has been published and can be accessed via a link at the top of the paper
Simulation-based reconstruction of global bird migration over the past 50,000 years
Migration is a widespread response of birds to seasonally varying climates. As seasonality is particularly pronounced during interglacial periods, this raises the question of the significance of bird migration during past periods with different patterns of seasonality. Here, we apply a mechanistic model to climate reconstructions to simulate the past 50,000 years of bird migration worldwide, a period encompassing the transition between the last glacial period and the current interglacial. Our results indicate that bird migration was also a prevalent phenomenon during the last ice age, almost as much as today, suggesting that it has been continually important throughout the glacial cycles of recent Earth history. We find however regional variations, with increasing migratory activity in the Americas, which is not mirrored in the Old World. These results highlight the strong flexibility of the global bird migration system and offer a baseline in the context of on-going anthropogenic climate change
The overlooked complexity of avian brood parasite–host relationships
The relationships between avian brood parasites and their hosts are widely recognised as model systems for studying coevolution. However, while most brood parasites are known to parasitise multiple species of host and hosts are often subject to parasitism by multiple brood parasite species, the examination of multispecies interactions remains rare. Here, we compile data on all known brood parasite–host relationships and find that complex brood parasite–host systems, where multiple species of brood parasites and hosts coexist and interact, are globally commonplace. By examining patterns of past research, we outline the disparity between patterns of network complexity and past research emphases and discuss factors that may be associated with these patterns. Drawing on insights gained from other systems that have embraced a multispecies framework, we highlight the potential benefits of considering brood parasite–host interactions as ecological networks and brood parasitism as a model system for studying multispecies interactions. Overall, our results provide new insights into the diversity of these relationships, highlight the stark mismatch between past research efforts and global patterns of network complexity, and draw attention to the opportunities that more complex arrangements offer for examining how species interactions shape global patterns of biodiversity
Movement and conformity interact to establish local behavioural traditions in animal populations
The social transmission of information is critical to the emergence of animal culture. Two processes are predicted to play key roles in how socially-transmitted information spreads in animal populations: the movement of individuals across the landscape and conformist social learning. We develop a model that, for the first time, explicitly integrates these processes to investigate their impacts on the spread of behavioural preferences. Our results reveal a strong interplay between movement and conformity in determining whether locally-variable traditions establish across a landscape or whether a single preference dominates the whole population. The model is able to replicate a real-world cultural diffusion experiment in great tits Parus major, but also allows for a range of predictions for the emergence of animal culture under various initial conditions, habitat structure and strength of conformist bias to be made. Integrating social behaviour with ecological variation will be important for understanding the stability and diversity of culture in animals