21 research outputs found

    SOAP-based services provided by the European Bioinformatics Institute

    Get PDF
    SOAP (Simple Object Access Protocol) () based Web Services technology () has gained much attention as an open standard enabling interoperability among applications across heterogeneous architectures and different networks. The European Bioinformatics Institute (EBI) is using this technology to provide robust data retrieval and data analysis mechanisms to the scientific community and to enhance utilization of the biological resources it already provides [N. Harte, V. Silventoinen, E. Quevillon, S. Robinson, K. Kallio, X. Fustero, P. Patel, P. Jokinen and R. Lopez (2004) Nucleic Acids Res., 32, 3ā€“9]. These services are available free to all users from

    Phenobarbital Indirectly Activates the Constitutive Active Androstane Receptor (CAR) by Inhibition of Epidermal Growth Factor Receptor Signaling

    Get PDF
    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr52, which then promoted the dephosphorylation of CAR at Thr38 by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR

    The European Nucleotide Archive

    Get PDF
    The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) is Europeā€™s primary nucleotide-sequence repository. The ENA consists of three main databases: the Sequence Read Archive (SRA), the Trace Archive and EMBL-Bank. The objective of ENA is to support and promote the use of nucleotide sequencing as an experimental research platform by providing data submission, archive, search and download services. In this article, we outline these services and describe major changes and improvements introduced during 2010. These include extended EMBL-Bank and SRA-data submission services, extended ENA Browser functionality, support for submitting data to the European Genome-phenome Archive (EGA) through SRA, and the launch of a new sequence similarity search service

    Priorities for nucleotide trace, sequence and annotation data capture at the Ensembl Trace Archive and the EMBL Nucleotide Sequence Database

    Get PDF
    The Ensembl Trace Archive (http://trace.ensembl.org/) and the EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/embl/), known together as the European Nucleotide Archive, continue to see growth in data volume and diversity. Selected major developments of 2007 are presented briefly, along with data submission and retrieval information. In the face of increasing requirements for nucleotide trace, sequence and annotation data archiving, data capture priority decisions have been taken at the European Nucleotide Archive. Priorities are discussed in terms of how reliably information can be captured, the long-term benefits of its capture and the ease with which it can be captured

    Phenobarbital Indirectly Activates the Constitutive Active Androstane Receptor (CAR) by Inhibition of Epidermal Growth Factor Receptor Signaling

    No full text
    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr52, which then promoted the dephosphorylation of CAR at Thr38 by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR
    corecore