5,041 research outputs found
Analysis of focused laser differential interferometry
A computational method for predicting the output of a focused laser differential interferometer (FLDI) given an arbitrary density field is presented. The method is verified against analytical predictions and experimental data. The FLDI simulation software is applied to the problem of measuring Mack-mode wave packets in a hypervelocity boundary layer on a 5° half-angle cone. The software is shown to complement experiments by providing the necessary information to allow quantitative density fluctuation magnitudes to be extracted from experimental measurements
Manipulating Memory Associations Changes Decision-making Preferences in a Preconditioning Task
Memories of past experiences can guide our decisions. Thus, if memories are undermined or distorted, decision making should be affected. Nevertheless, little empirical research has been done to examine the role of memory in reinforcement decision-making . We hypothesized that if memories guide choices in a conditioning decision-making task, then manipulating these memories would result in a change of decision preferences to gain reward. We manipulated participants’ memories by providing false feedback that their memory associations were wrong before they made decisions that could lead them to win money . Participants’ memory ratings decreased significantly after receiving false feedback. More importantly, we found that false feedback led participants’ decision bias to disappear after their memory associations were undermined . Our results suggest that reinforcement decision-making can be altered by fasle feedback on memories . The results are discussed using memory mechanisms such as spreading activation theories
Blur resolved OCT: full-range interferometric synthetic aperture microscopy through dispersion encoding
We present a computational method for full-range interferometric synthetic
aperture microscopy (ISAM) under dispersion encoding. With this, one can
effectively double the depth range of optical coherence tomography (OCT),
whilst dramatically enhancing the spatial resolution away from the focal plane.
To this end, we propose a model-based iterative reconstruction (MBIR) method,
where ISAM is directly considered in an optimization approach, and we make the
discovery that sparsity promoting regularization effectively recovers the
full-range signal. Within this work, we adopt an optimal nonuniform discrete
fast Fourier transform (NUFFT) implementation of ISAM, which is both fast and
numerically stable throughout iterations. We validate our method with several
complex samples, scanned with a commercial SD-OCT system with no hardware
modification. With this, we both demonstrate full-range ISAM imaging, and
significantly outperform combinations of existing methods.Comment: 17 pages, 7 figures. The images have been compressed for arxiv -
please follow DOI for full resolutio
Similarities between digits’ movements in grasping, touching and pushing
In order to find out whether the movements of single digits are controlled in a special way when grasping, we compared the movements of the digits when grasping an object with their movements in comparable single-digit tasks: pushing or lightly tapping the same object at the same place. The movements of the digits in grasping were very similar to the movements in the single-digit tasks. To determine to what extent the hand transport and grip formation in grasping emerges from a synchronised motion of individual digits, we combined movements of finger and thumb in the single-digit tasks to obtain hypothetical transport and grip components. We found a larger peak grip aperture earlier in the movement for the single-digit tasks. The timing of peak grip aperture depended in the same way on its size for all tasks. Furthermore, the deviations from a straight line of the transport component differed considerably between subjects, but were remarkably similar across tasks. These results support the idea that grasping should be regarded as consisting of moving the digits, rather than transporting the hand and shaping the grip
QMRA in the Drinking Water Distribution System
AbstractA Quantitative Microbial Risk Assessment (QMRA) model was developed for contamination events after mains repairs. The sensitivity analysis showed that the contamination concentration is the most important parameter, next to the pathogen dose response relation. The time of opening valves and of consumption are also important parameters. The event location within the network and the amount of consumption are of smaller importance. Issuing a boil water advice and opening only one valve before “releasing” the entire isolation section are effective measures to reduce the number of infected people per event by a factor of 2 to 4
Hotspot Zuidplaspolder: Climate adaptation in the Zuidplaspolder
Building at the lowest point in the Netherlands, in the Zuidplaspolder, is viewed as a challenge and not something that is impossible. The Xplorelab approach in the Hotspot Zuidplaspolder project is a combination of research, implementation of ideas into inspiring examples and evaluation
Deceleration and electrostatic trapping of OH radicals
A pulsed beam of ground state OH radicals is slowed down using a Stark
decelerator and is subsequently loaded into an electrostatic trap.
Characterization of the molecular beam production, deceleration and trap
loading process is performed via laser induced fluorescence detection inside
the quadrupole trap. Depending on details of the trap loading sequence,
typically OH () radicals are trapped at a density
of around cm and at temperatures in the 50-500 mK range. The 1/e
trap lifetime is around 1.0 second.Comment: 4 pages, 3 figure
Grasping trapezoidal objects
When grasping rectangular or circular objects with a precision grip the digits close in on the object in opposite directions. In doing so the digits move perpendicular to the local surface orientation as they approach opposite sides of the object. This perpendicular approach is advantageous for accurately placing the digits. Trapezoidal objects have non-parallel surfaces so that moving the digits in opposite directions would make the digits approach the contact surfaces at an angle that is not 90°. In this study we examined whether this happens, or whether subjects tend to approach trapezoidal objects’ surfaces perpendicularly. We used objects of different sizes and with different surface slants. Subjects tended to approach the object’s surfaces orthogonally, suggesting that they aim for an optimal precision of digit placement rather than simply closing their hand as it reaches the object
Atom lithography without laser cooling
Using direct-write atom lithography, Fe nanolines are deposited with a pitch
of 186 nm, a full width at half maximum (FWHM) of 50 nm, and a height of up to
6 nm. These values are achieved by relying on geometrical collimation of the
atomic beam, thus without using laser collimation techniques. This opens the
way for applying direct-write atom lithography to a wide variety of elements.Comment: 7 pages, 11 figure
- …