1,860 research outputs found
How does a protein search for the specific site on DNA: the role of disorder
Proteins can locate their specific targets on DNA up to two orders of
magnitude faster than the Smoluchowski three-dimensional diffusion rate. This
happens due to non-specific adsorption of proteins to DNA and subsequent
one-dimensional sliding along DNA. We call such one-dimensional route towards
the target "antenna". We studied the role of the dispersion of nonspecific
binding energies within the antenna due to quasi random sequence of natural
DNA. Random energy profile for sliding proteins slows the searching rate for
the target. We show that this slowdown is different for the macroscopic and
mesoscopic antennas.Comment: 4 pages, 4 figure
Information and Multi-Period Optimal Income Taxation with Government Commitment
The optimal income taxation problem has been extensively studied in one- period models. When consumers work for many periods, this paper analyzes what information, if any, that the government learns about abilities in one period can be used in later periods to attain more redistribution than in a one- period world. liken the government must commit itself to future tax schedules, the gains cane from relaxing self-selection constraints by intertemporal nonstationarity. The effect of nonstationarity is analogous to that of randomization in one-period models. In a model with two ability classes it is shown that the key use of information is that only a single lifetime self-selection constraint for each type of consumer must be imposed. Sane necessary and sufficient conditions for randomization or nonstationarity are given. The planner can make additional use of the information when individual and social rates of time discounting differ. In this case, the limiting tax schedule is a nondistorting one if the government has a lower discount rate than individuals.
Diffusion-limited reactions and mortal random walkers in confined geometries
Motivated by the diffusion-reaction kinetics on interstellar dust grains, we
study a first-passage problem of mortal random walkers in a confined
two-dimensional geometry. We provide an exact expression for the encounter
probability of two walkers, which is evaluated in limiting cases and checked
against extensive kinetic Monte Carlo simulations. We analyze the continuum
limit which is approached very slowly, with corrections that vanish
logarithmically with the lattice size. We then examine the influence of the
shape of the lattice on the first-passage probability, where we focus on the
aspect ratio dependence: Distorting the lattice always reduces the encounter
probability of two walkers and can exhibit a crossover to the behavior of a
genuinely one-dimensional random walk. The nature of this transition is also
explained qualitatively.Comment: 18 pages, 16 figure
Recommended from our members
Dynamic Optimal Income Taxation with Government Commitment
Analyzes the optimal income taxation problems of consumers in the United States. Usage of the abilities learned in one period to attain redistribution; Commitment of the government to policies on the intertemporal nonstationarity of tax schedules; Relevance of lesser social discount rate on the rate of individual
Estimates for practical quantum cryptography
In this article I present a protocol for quantum cryptography which is secure
against attacks on individual signals. It is based on the Bennett-Brassard
protocol of 1984 (BB84). The security proof is complete as far as the use of
single photons as signal states is concerned. Emphasis is given to the
practicability of the resulting protocol. For each run of the quantum key
distribution the security statement gives the probability of a successful key
generation and the probability for an eavesdropper's knowledge, measured as
change in Shannon entropy, to be below a specified maximal value.Comment: Authentication scheme corrected. Other improvements of presentatio
High-Definition Optical Coherence Tomography for the in vivo Detection of Demodex Mites
Background: Demodex mites are involved in different skin diseases and are commonly detected by skin scrape tests or superficial biopsies. A new high-definition optical coherence tomography (HD-OCT) with high lateral and axial resolution in a horizontal (en-face) and vertical (slice) imaging mode might offer the possibility of noninvasive and fast in vivo examination of demodex mites. Methods: Twenty patients with demodex-related skin diseases and 20 age- and gender-matched healthy controls were examined by HD-OCT. Mites per follicle and follicles per field of view were counted and compared to skin scrape tests. Results: HD-OCT images depicted mites in the en-face mode as bright round dots in groups of 3-5 mites per hair follicle. In the patients with demodex-related disease, a mean number of 3.4 mites per follicle were detected with a mean number of 2.9 infested follicles per area of view compared to a mean of 0.6 mites in 0.4 infested follicles in the controls. The skin scrape tests were negative in 21% of the patients. Conclusion: The innovative HD-OCT enables fast and noninvasive in vivo recognition of demodex mites and might become a useful tool in the diagnosis and treatment monitoring of demodex-related skin diseases. Copyright (C) 2012 S. Karger AG, Base
Security of quantum cryptography using balanced homodyne detection
In this paper we investigate the security of a quantum cryptographic scheme
which utilizes balanced homodyne detection and weak coherent pulse (WCP). The
performance of the system is mainly characterized by the intensity of the WCP
and postselected threshold. Two of the simplest intercept/resend eavesdropping
attacks are analyzed. The secure key gain for a given loss is also discussed in
terms of the pulse intensity and threshold.Comment: RevTeX4, 8pages, 7 figure
A prototype vector magnetic field monitoring system for a neutron electric dipole moment experiment
We present results from a first demonstration of a magnetic field monitoring system for a neutron electric dipole moment experiment. The system is designed to reconstruct the vector components of the magnetic field in the interior measurement region solely from exterior measurements
Enhanced reaction kinetics in biological cells
The cell cytoskeleton is a striking example of "active" medium driven
out-of-equilibrium by ATP hydrolysis. Such activity has been shown recently to
have a spectacular impact on the mechanical and rheological properties of the
cellular medium, as well as on its transport properties : a generic tracer
particle freely diffuses as in a standard equilibrium medium, but also
intermittently binds with random interaction times to motor proteins, which
perform active ballistic excursions along cytoskeletal filaments. Here, we
propose for the first time an analytical model of transport limited reactions
in active media, and show quantitatively how active transport can enhance
reactivity for large enough tracers like vesicles. We derive analytically the
average interaction time with motor proteins which optimizes the reaction rate,
and reveal remarkable universal features of the optimal configuration. We
discuss why active transport may be beneficial in various biological examples:
cell cytoskeleton, membranes and lamellipodia, and tubular structures like
axons.Comment: 10 pages, 2 figure
- …
