26,478 research outputs found

    Spin crossover in (Mg,Fe3+^{3+})(Si,Fe3+^{3+})O3_3 bridgmanite: effects of disorder, iron concentration, and temperature

    Full text link
    The spin crossover of iron in Fe3+^{3+}-bearing bridgmanite, the most abundant mineral of the Earth's lower mantle, is by now a well-established phenomenon, though several aspects of this crossover remain unclear. Here we investigate effects of disorder, iron concentration, and temperature on this crossover using ab initio LDA + Usc_{sc} calculations. The effect of concentration and disorder are addressed using complete statistical samplings of coupled substituted configurations in super-cells containing up to 80 atoms. Vibrational/thermal effects on the crossover are addressed within the quasiharmonic approximation. The effect of disorder seems quite small, while increasing iron concentration results in considerable increase in crossover pressure. Our calculated compression curves for iron-free, Fe2+^{2+}-, and Fe3+^{3+}-bearing bridgmanite compare well with the latest experimental measurements. The comparison also suggests that in a close system, Fe2+^{2+} present in the sample may transform into Fe3+^{3+} by introduction of Mg and O vacancies with increasing pressure. As in the spin crossover in ferropericlase, this crossover in bridgmanite is accompanied by a clear volume reduction and an anomalous softening of the bulk modulus throughout the crossover pressure range. These effects reduce significantly with increasing temperature. Though the concentration of [Fe3+^{3+}]Si_{Si} in bridgmanite may be small, related elastic anomalies may impact the interpretation of radial and lateral velocity structures of the Earth's lower mantle.Comment: Under review with Earth and Planetary Science Letter

    Dust acoustic wave in a strongly magnetized pair-dust plasma

    Full text link
    The existence of the dust acoustic wave (DAW) in a strongly magnetized electron-positron (pair)-dust plasma is demonstrated. In the DAW, the restoring force comes from the pressure of inertialess electrons and positrons, and the dust mass provides the inertia. The waves could be of interest in astrophysical settings such as the supernovae and pulsars, as well as in cluster explosions by intense laser beams in laboratory plasmas.Comment: 6 pages, revtex

    The Intense Radiation Gas

    Full text link
    We present a new dispersion relation for photons that are nonlinearly interacting with a radiation gas of arbitrary intensity due to photon-photon scattering. It is found that the photon phase velocity decreases with increasing radiation intensity, it and attains a minimum value in the limit of super-intense fields. By using Hamilton's ray equations, a self-consistent kinetic theory for interacting photons is formulated. The interaction between an electromagnetic pulse and the radiation gas is shown to produce pulse self-compression and nonlinear saturation. Implications of our new results are discussed.Comment: 7 pages, 1 figure, version to appear in Europhys. Let

    Nonlinear propagation of broadband intense electromagnetic waves in an electron-positron plasma

    Get PDF
    A kinetic equation describing the nonlinear evolution of intense electromagnetic pulses in electron-positron (e-p) plasmas is presented. The modulational instability is analyzed for a relativistically intense partially coherent pulse, and it is found that the modulational instability is inhibited by the spectral pulse broadening. A numerical study for the one-dimensional kinetic photon equation is presented. Computer simulations reveal a Fermi-Pasta-Ulam-like recurrence phenomena for localized broadband pulses. The results should be of importance in understanding the nonlinear propagation of broadband intense electromagnetic pulses in e-p plasmas in laser-plasma systems as well as in astrophysical plasma settings.Comment: 16 pages, 5 figures, to appear in Phys. Plasma

    Self-compression and catastrophic collapse of photon bullets in vacuum

    Full text link
    Photon-photon scattering, due to photons interacting with virtual electron-positron pairs, is an intriguing deviation from classical electromagnetism predicted by quantum electrodynamics (QED). Apart from being of fundamental interest in itself, collisions between photons are believed to be of importance in the vicinity of magnetars, in the present generation intense lasers, and in intense laser-plasma/matter interactions; the latter recreating astrophysical conditions in the laboratory. We show that an intense photon pulse propagating through a radiation gas can self-focus, and under certain circumstances collapse. This is due to the response of the radiation background, creating a potential well in which the pulse gets trapped, giving rise to photonic solitary structures. When the radiation gas intensity has reached its peak values, the gas releases part of its energy into `photon wedges', similar to Cherenkov radiation. The results should be of importance for the present generation of intense lasers and for the understanding of localized gamma ray bursts in astrophysical environments. They could furthermore test the predictions of QED, and give means to create ultra-intense photonic pulses.Comment: 4 pages, 1 figur

    Nonlinear dynamics of large amplitude dust acoustic shocks and solitary pulses in dusty plasmas

    Get PDF
    We present a fully nonlinear theory for dust acoustic (DA) shocks and DA solitary pulses in a strongly coupled dusty plasma, which have been recently observed experimentally by Heinrich et al. [Phys. Rev. Lett. 103, 115002 (2009)], Teng et al. [Phys. Rev. Lett. 103, 245005 (2009)], and Bandyopadhyay et al. [Phys. Rev. Lett. 101, 065006 (2008)]. For this purpose, we use a generalized hydrodynamic model for the strongly coupled dust grains, accounting for arbitrary large amplitude dust number density compressions and potential distributions associated with fully nonlinear nonstationary DA waves. Time-dependent numerical solutions of our nonlinear model compare favorably well with the recent experimental works (mentioned above) that have reported the formation of large amplitude non-stationary DA shocks and DA solitary pulses in low-temperature dusty plasma discharges.Comment: 9 pages, 4 figures. To be published in Physical Review

    Simulation study of the filamentation of counter-streaming beams of the electrons and positrons in plasmas

    Full text link
    The filamentation instability driven by two spatially uniform and counter-streaming beams of charged particles in plasmas is modelled by a particle-in-cell (PIC) simulation. Each beam consists of the electrons and positrons. The four species are equally dense and they have the same temperature. The one-dimensional simulation direction is orthogonal to the beam velocity vector. The magnetic field grows spontaneously and rearranges the particles in space, such that the distributions of the electrons of one beam and the positrons of the second beam match. The simulation demonstrates that as a result no electrostatic field is generated by the magnetic field through its magnetic pressure gradient prior to its saturation. This electrostatic field would be repulsive at the centres of the filaments and limit the maximum charge and current density. The filaments of electrons and positrons in this simulation reach higher charge and current densities than in one with no positrons. The oscillations of the magnetic field strength induced by the magnetically trapped particles result in an oscillatory magnetic pressure gradient force. The latter interplays with the statistical fluctuations in the particle density and it probably enforces a charge separation, by which electrostatic waves grow after the filamentation instability has saturated.Comment: 13 pages, 8 figure

    Analysis of the 3DVAR Filter for the Partially Observed Lorenz '63 Model

    Full text link
    The problem of effectively combining data with a mathematical model constitutes a major challenge in applied mathematics. It is particular challenging for high-dimensional dynamical systems where data is received sequentially in time and the objective is to estimate the system state in an on-line fashion; this situation arises, for example, in weather forecasting. The sequential particle filter is then impractical and ad hoc filters, which employ some form of Gaussian approximation, are widely used. Prototypical of these ad hoc filters is the 3DVAR method. The goal of this paper is to analyze the 3DVAR method, using the Lorenz '63 model to exemplify the key ideas. The situation where the data is partial and noisy is studied, and both discrete time and continuous time data streams are considered. The theory demonstrates how the widely used technique of variance inflation acts to stabilize the filter, and hence leads to asymptotic accuracy

    Oblique amplitude modulation of dust-acoustic plasma waves

    Full text link
    Theoretical and numerical studies are presented of the nonlinear amplitude modulation of dust-acoustic (DA) waves propagating in an unmagnetized three component, weakly-coupled, fully ionized plasma consisting of electrons, positive ions and charged dust particles, considering perturbations oblique to the carrier wave propagation direction. The stability analysis, based on a nonlinear Schroedinger-type equation (NLSE), shows that the wave may become unstable; the stability criteria depend on the angle θ\theta between the modulation and propagation directions. Explicit expressions for the instability rate and threshold have been obtained in terms of the dispersion laws of the system. The possibility and conditions for the existence of different types of localized excitations have also been discussed.Comment: 21 pages, 6 figures, to appear in Physica Script
    corecore