287 research outputs found

    Investigating Embryonic Expression Patterns and Evolution of AHI1 and CEP290 Genes, Implicated in Joubert Syndrome

    Get PDF
    Joubert syndrome and related diseases (JSRD) are developmental cerebello-oculo-renal syndromes with phenotypes including cerebellar hypoplasia, retinal dystrophy and nephronophthisis (a cystic kidney disease). We have utilised the MRCWellcome Trust Human Developmental Biology Resource (HDBR), to perform in-situ hybridisation studies on embryonic tissues, revealing an early onset neuronal, retinal and renal expression pattern for AHI1. An almost identical pattern of expression is seen with CEP290 in human embryonic and fetal tissue. A novel finding is that both AHI1 and CEP290 demonstrate strong expression within the developing choroid plexus, a ciliated structure important for central nervous system development. To test if AHI1 and CEP290 may have co-evolved, we carried out a genomic survey of a large group of organisms across eukaryotic evolution. We found that, in animals, ahi1 and cep290 are almost always found together; however in other organisms either one may be found independent of the other. Finally, we tested in murine epithelial cells if Ahi1 was required for recruitment of Cep290 to the centrosome. We found no obvious differences in Cep290 localisation in the presence or absence of Ahi1, suggesting that, while Ahi1 and Cep290 may function together in the whole organism, they are not interdependent for localisation within a single cell. Taken together these data support a role for AHI1 and CEP290 in multiple organs throughout development and we suggest that this accounts for the wide phenotypic spectrum of AHI1 and CEP290 mutations in man

    Gene set of nuclear-encoded mitochondrial regulators is enriched for common inherited variation in obesity

    Get PDF
    There are hints of an altered mitochondrial function in obesity. Nuclear-encoded genes are relevant for mitochondrial function (3 gene sets of known relevant pathways: (1) 16 nuclear regulators of mitochondrial genes, (2) 91 genes for oxidative phosphorylation and (3) 966 nuclear-encoded mitochondrial genes). Gene set enrichment analysis (GSEA) showed no association with type 2 diabetes mellitus in these gene sets. Here we performed a GSEA for the same gene sets for obesity. Genome wide association study (GWAS) data from a case-control approach on 453 extremely obese children and adolescents and 435 lean adult controls were used for GSEA. For independent confirmation, we analyzed 705 obesity GWAS trios (extremely obese child and both biological parents) and a population-based GWAS sample (KORA F4, n = 1,743). A meta-analysis was performed on all three samples. In each sample, the distribution of significance levels between the respective gene set and those of all genes was compared using the leading-edge-fraction-comparison test (cut-offs between the 50(th) and 95(th) percentile of the set of all gene-wise corrected p-values) as implemented in the MAGENTA software. In the case-control sample, significant enrichment of associations with obesity was observed above the 50(th) percentile for the set of the 16 nuclear regulators of mitochondrial genes (p(GSEA,50) = 0.0103). This finding was not confirmed in the trios (p(GSEA,50) = 0.5991), but in KORA (p(GSEA,50) = 0.0398). The meta-analysis again indicated a trend for enrichment (p(MAGENTA,50) = 0.1052, p(MAGENTA,75) = 0.0251). The GSEA revealed that weak association signals for obesity might be enriched in the gene set of 16 nuclear regulators of mitochondrial genes

    An exposure-effect approach for evaluating ecosystem-wide risks from human activities

    Get PDF
    Ecosystem-based management (EBM) is promoted as the solution for sustainable use. An ecosystem-wide assessment methodology is therefore required. In this paper, we present an approach to assess the risk to ecosystem components from human activities common to marine and coastal ecosystems. We build on: (i) a linkage framework that describes how human activities can impact the ecosystem through pressures, and (ii) a qualitative expert judgement assessment of impact chains describing the exposure and sensitivity of ecological components to those activities. Using case study examples applied at European regional sea scale, we evaluate the risk of an adverse ecological impact from current human activities to a suite of ecological components and, once impacted, the time required for recovery to pre-impact conditions should those activities subside. Grouping impact chains by sectors, pressure type, or ecological components enabled impact risks and recovery times to be identified, supporting resource managers in their efforts to prioritize threats for management, identify most at-risk components, and generate time frames for ecosystem recovery

    High efficient differentiation of functional hepatocytes from porcine induced pluripotent stem cells

    Get PDF
    Hepatocyte transplantation is considered to be a promising therapy for patients with liver diseases. Induced pluripotent stem cells (iPSCs) provide an unlimited source for the generation of functional hepatocytes. In this study, we generated iPSCs from porcine ear fibroblasts (PEFs) by overexpressing Sox2, Klf4, Oct4, and c-Myc (SKOM), and developed a novel strategy for the efficient differentiation of hepatocyte-like cells from porcine iPSCs by following the processes of early liver development. The differentiated cells displayed the phenotypes of hepatocytes, exhibited classic hepatocyte-associated bio-functions, such as LDL uptake, glycogen storage and urea secretion, as well as possessed the metabolic activities of cytochrome P-450 (CYP) 3A and 2C. Furthermore, we compared the hepatocyte differentiation efficacy of our protocol with another published method, and the results demonstrated that our differentiation strategy could significantly improve the generation of morphological and functional hepatocyte-like cells from porcine iPSCs. In conclusion, this study establishes an efficient method for in vitro generation of functional hepatocytes from porcine iPSCs, which could represent a promising cell source for preclinical testing of cell-based therapeutics for liver failure and for pharmacological applications. © 2014 Ao et al

    Antiarrhythmic Effects of Dantrolene in Patients with Catecholaminergic Polymorphic Ventricular Tachycardia and Replication of the Responses Using iPSC Models

    Get PDF
    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly malignant inherited arrhythmogenic disorder. Type 1 CPVT (CPVT1) is caused by cardiac ryanodine receptor (RyR2) gene mutations resulting in abnormal calcium release from sarcoplasmic reticulum. Dantrolene, an inhibitor of sarcoplasmic Ca2+ release, has been shown to rescue this abnormal Ca2+ release in vitro. We assessed the antiarrhythmic efficacy of dantrolene in six patients carrying various RyR2 mutations causing CPVT. The patients underwent exercise stress test before and after dantrolene infusion. Dantrolene reduced the number of premature ventricular complexes (PVCs) on average by 74% (range 33-97) in four patients with N-terminal or central mutations in the cytosolic region of the RyR2 protein, while dantrolene had no effect in two patients with mutations in or near the transmembrane domain. Induced pluripotent stem cells (iPSCs) were generated from all the patients and differentiated into spontaneously beating cardiomyocytes (CMs). The antiarrhythmic effect of dantrolene was studied in CMs after adrenaline stimulation by Ca2+ imaging. In iPSC derived CMs with RyR2 mutations in the N-terminal or central region, dantrolene suppressed the Ca2+ cycling abnormalities in 80% (range 65-97) of cells while with mutations in or near the transmembrane domain only in 23 or 32% of cells. In conclusion, we demonstrate that dantrolene given intravenously shows antiarrhythmic effects in a portion of CPVT1 patients and that iPSC derived CM models replicate these individual drug responses. These findings illustrate the potential of iPSC models to individualize drug therapy of inherited diseases.Peer reviewe

    Microbial Functional Capacity Is Preserved Within Engineered Soil Formulations Used In Mine Site Restoration

    Get PDF
    Mining of mineral resources produces substantial volumes of crushed rock based wastes that are characterised by poor physical structure and hydrology, unstable geochemistry and potentially toxic chemical conditions. Recycling of these substrates is desirable and can be achieved by blending waste with native soil to form a 'novel substrate' which may be used in future landscape restoration. However, these post-mining substrate based 'soils' are likely to contain significant abiotic constraints for both plant and microbial growth. Effective use of these novel substrates for ecosystem restoration will depend on the efficacy of stored topsoil as a potential microbial inoculum as well as the subsequent generation of key microbial soil functions originally apparent in local pristine sites. Here, using both marker gene and shotgun metagenome sequencing, we show that topsoil storage and the blending of soil and waste substrates to form planting substrates gives rise to variable bacterial and archaeal phylogenetic composition but a high degree of metabolic conservation at the community metagenome level. Our data indicates that whilst low phylogenetic conservation is apparent across substrate blends we observe high functional redundancy in relation to key soil microbial pathways, allowing the potential for functional recovery of key belowground pathways under targeted management

    Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity

    Get PDF
    The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1472-6750/11/103Background: The filamentous fungus Trichoderma reesei (Hypocrea jecorina) is an important source of cellulases for use in the textile and alternative fuel industries. To fully understand the regulation of cellulase production in T. reesei, the role of a gene known to be involved in carbon regulation in Aspergillus nidulans, but unstudied in T. reesei, was investigated. Results: The T. reesei orthologue of the A. nidulans creB gene, designated cre2, was identified and shown to be functional through heterologous complementation of a creB mutation in A. nidulans. A T. reesei strain was constructed using gene disruption techniques that contained a disrupted cre2 gene. This strain, JKTR2-6, exhibited phenotypes similar to the A. nidulans creB mutant strain both in carbon catabolite repressing, and in carbon catabolite derepressing conditions. Importantly, the disruption also led to elevated cellulase levels. Conclusions: These results demonstrate that cre2 is involved in cellulase expression. Since the disruption of cre2 increases the amount of cellulase activity, without severe morphological affects, targeting creB orthologues for disruption in other industrially useful filamentous fungi, such as Aspergillus oryzae, Trichoderma harzianum or Aspergillus niger may also lead to elevated hydrolytic enzyme activity in these species.Jai A Denton and Joan M Kell

    Clinical outcomes in patients treated for coronary in-stent restenosis with drug-eluting balloons: Impact of high platelet reactivity.

    Get PDF
    BACKGROUND: The impact of high platelet reactivity (HPR) on clinical outcomes after elective percutaneous coronary interventions (PCI) with drug-eluting balloons (DEB) due to in-stent restenosis (ISR) is unknown. OBJECTIVE: We sought to evaluate the prognostic importance of HPR together with conventional risk factors in patients treated with DEB. METHODS: Patients treated with DEB due to ISR were enrolled in a single-centre, prospective registry between October 2009 and March 2015. Only patients with recent myocardial infarction (MI) received prasugrel, others were treated with clopidogrel. HPR was defined as an ADP-test >46U with the Multiplate assay and no adjustments were done based on results. The primary endpoint of the study was a composite of cardiovascular mortality, MI, any revascularization or stroke during one-year follow-up. RESULTS: 194 stable angina patients were recruited of whom 90% were treated with clopidogrel. Clinical characteristics and procedural data were available for all patients; while platelet function testing was performed in 152 subjects of whom 32 (21%) had HPR. Patients with HPR had a higher risk for the primary endpoint (HR: 2.45; CI: 1.01-5.92; p = 0.03). The difference was primarily driven by a higher risk for revascularization and MI. According to the multivariate analysis, HPR remained a significant, independent predictor of the primary endpoint (HR: 2.88; CI: 1.02-8.14; p = 0.04), while total DEB length and statin treatment were other independent correlates of the primary outcome. CONCLUSION: HPR was found to be an independent predictor of repeat revascularization and MI among elective patients with ISR undergoing PCI with DEB
    corecore