14 research outputs found

    Paper Session II-C - Alternative Launch Site Selection

    Get PDF
    Due to circumstances beyond its control, Lockheed Martin\u27s Athena Small Launch Vehicle Program is being forced to relocate from the current Space Launch Complex (SLC) 6 at Vandenberg AFB, CA, to an alternate location. The objective of this study is to recommend highly favorable launch sites to Lockheed Martin Astronautics management for further development. We develop and use a hierarchical, multiobjective value model, to analyze and evaluate alternative launch sites capable of performing SLC-6 polar orbiting missions, as well as future easterly launches

    Temperature Control of Fimbriation Circuit Switch in Uropathogenic Escherichia coli: Quantitative Analysis via Automated Model Abstraction

    Get PDF
    Uropathogenic Escherichia coli (UPEC) represent the predominant cause of urinary tract infections (UTIs). A key UPEC molecular virulence mechanism is type 1 fimbriae, whose expression is controlled by the orientation of an invertible chromosomal DNA element—the fim switch. Temperature has been shown to act as a major regulator of fim switching behavior and is overall an important indicator as well as functional feature of many urologic diseases, including UPEC host-pathogen interaction dynamics. Given this panoptic physiological role of temperature during UTI progression and notable empirical challenges to its direct in vivo studies, in silico modeling of corresponding biochemical and biophysical mechanisms essential to UPEC pathogenicity may significantly aid our understanding of the underlying disease processes. However, rigorous computational analysis of biological systems, such as fim switch temperature control circuit, has hereto presented a notoriously demanding problem due to both the substantial complexity of the gene regulatory networks involved as well as their often characteristically discrete and stochastic dynamics. To address these issues, we have developed an approach that enables automated multiscale abstraction of biological system descriptions based on reaction kinetics. Implemented as a computational tool, this method has allowed us to efficiently analyze the modular organization and behavior of the E. coli fimbriation switch circuit at different temperature settings, thus facilitating new insights into this mode of UPEC molecular virulence regulation. In particular, our results suggest that, with respect to its role in shutting down fimbriae expression, the primary function of FimB recombinase may be to effect a controlled down-regulation (rather than increase) of the ON-to-OFF fim switching rate via temperature-dependent suppression of competing dynamics mediated by recombinase FimE. Our computational analysis further implies that this down-regulation mechanism could be particularly significant inside the host environment, thus potentially contributing further understanding toward the development of novel therapeutic approaches to UPEC-caused UTIs

    Design and noise model for CCD-based, time-resolved PHA measurements

    No full text
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder

    Implementation of an established algorithm and modifications for the identification of epilepsy patients in the veterans health administration

    No full text
    •Efforts for identifying epilepsy patients in the VHA are presented.•The number of epilepsy patients in the VHA ranges between 74,000 and 87,000.•Lessons learned would be helpful for future research after enactment of ICD −10. Identification of epilepsy patients from administrative data in large managed healthcare organizations is a challenging task. The objectives of this report are to describe the implementation of an established algorithm and different modifications for the estimation of epilepsy prevalence in the Veterans Health Administration (VHA). For the prevalence estimation during a given time period patients prescribed anti-epileptic drugs and having seizure diagnoses on clinical encounters were identified. In contrast to the established algorithm, which required inclusion of diagnoses data from the time period of interest only, variants were tested by considering diagnoses data beyond prevalence period for improving sensitivity. One variant excluded data from diagnostic EEG and LTM clinics to improve specificity. Another modification also required documentation of seizures on the problem list (electronic list of patients’ established diagnoses). Of the variants tested, the one excluding information from diagnostic clinics and extending time beyond base period of interest for clinical encounters was determined to be superior. It can be inferred that the number of patients receiving care for epilepsy in the VHA ranges between 74,000 and 87,000. In the wake of the recent implementation of ICD-10 codes in the VHA, minor tweaks are needed for future prevalence estimation due to significant efforts presented. This review is not only beneficial for researchers interested in VHA related data but can also be helpful for managed healthcare organizations involved in epilepsy care aiming at accurate identification of patients from large administrative databases
    corecore