2,207 research outputs found
Excitation of stellar p-modes by turbulent convection: 1. Theoretical formulation
Stochatic excitation of stellar oscillations by turbulent convection is
investigated and an expression for the power injected into the oscillations by
the turbulent convection of the outer layers is derived which takes into
account excitation through turbulent Reynolds stresses and turbulent entropy
fluctuations. This formulation generalizes results from previous works and is
built so as to enable investigations of various possible spatial and temporal
spectra of stellar turbulent convection. For the Reynolds stress contribution
and assuming the Kolmogorov spectrum we obtain a similar formulation than those
derived by previous authors. The entropy contribution to excitation is found to
originate from the advection of the Eulerian entropy fluctuations by the
turbulent velocity field. Numerical computations in the solar case in a
companion paper indicate that the entropy source term is dominant over Reynold
stress contribution to mode excitation, except at high frequencies.Comment: 14 pages, accepted for publication in A&
Period spacings in red giants II. Automated measurement
The space missions CoRoT and Kepler have provided photometric data of
unprecedented quality for asteroseismology. A very rich oscillation pattern has
been discovered for red giants, including mixed modes that are used to decipher
the red giants interiors. They carry information on the radiative core of red
giant stars and bring strong constraints on stellar evolution. Since more than
15,000 red giant light curves have been observed by Kepler, we have developed a
simple and efficient method for automatically characterizing the mixed-mode
pattern and measuring the asymptotic period spacing. With the asymptotic
expansion of the mixed modes, we have revealed the regularity of the
gravity-mode pattern. The stretched periods were used to study the evenly space
periods with a Fourier analysis and to measure the gravity period spacing, even
when rotation severely complicates the oscillation spectra. We automatically
measured gravity period spacing for more than 6,100 Kepler red giants. The
results confirm and extend previous measurements made by semi-automated
methods. We also unveil the mass and metallicity dependence of the relation
between the frequency spacings and the period spacings for stars on the red
giant branch. The delivery of thousands of period spacings combined with all
other seismic and non-seismic information provides a new basis for detailed
ensemble asteroseismology.Comment: 13 pages, 13 figure
Excitation of non-radial stellar oscillations by gravitational waves: a first model
The excitation of solar and solar-like g modes in non-relativistic stars by
arbitrary external gravitational wave fields is studied starting from the full
field equations of general relativity. We develop a formalism that yields the
mean-square amplitudes and surface velocities of global normal modes excited in
such a way. The isotropic elastic sphere model of a star is adopted to
demonstrate this formalism and for calculative simplicity. It is shown that
gravitational waves solely couple to quadrupolar spheroidal eigenmodes and that
normal modes are only sensitive to the spherical component of the gravitational
waves having the same azimuthal order. The mean-square amplitudes in case of
stationary external gravitational waves are given by a simple expression, a
product of a factor depending on the resonant properties of the star and the
power spectral density of the gravitational waves' spherical accelerations.
Both mean-square amplitudes and surface velocities show a characteristic
R^8-dependence (effective R^2-dependence) on the radius of the star. This
finding increases the relevance of this excitation mechanism in case of stars
larger than the Sun.Comment: 8 pages, to be published in MNRAS (in press); corrected typo
Excitation of solar-like oscillations across the HR diagram
We extend semi-analytical computations of excitation rates for solar
oscillation modes to those of other solar-like oscillating stars to compare
them with recent observations. Numerical 3D simulations of surface convective
zones of several solar-type oscillating stars are used to characterize the
turbulent spectra as well as to constrain the convective velocities and
turbulent entropy fluctuations in the uppermost part of the convective zone of
such stars. These constraints, coupled with a theoretical model for stochastic
excitation, provide the rate 'P' at which energy is injected into the p-modes
by turbulent convection. These energy rates are compared with those derived
directly from the 3D simulations. The excitation rates obtained from the 3D
simulations are systematically lower than those computed from the
semi-analytical excitation model. We find that Pmax, the excitation rate
maximum, scales as (L/M)^s where s is the slope of the power law and L and M
are the mass and luminosity of the 1D stellar model built consistently with the
associated 3D simulation. The slope is found to depend significantly on the
adopted form of the eddy time-correlation ; using a Lorentzian form results in
s=2.6, whereas a Gaussian one gives s=3.1. Finally, values of Vmax, the maximum
in the mode velocity, are estimated from the computed power laws for Pmax and
we find that Vmax increases as (L/M)^sv. Comparisons with the currently
available ground-based observations show that the computations assuming a
Lorentzian eddy time-correlation yield a slope, sv, closer to the observed one
than the slope obtained when assuming a Gaussian. We show that the spatial
resolution of the 3D simulations must be high enough to obtain accurate
computed energy rates.Comment: 14 pages ; 7 figures ; accepted for publication in Astrophysics &
Astronom
Theoretical power spectra of mixed modes in low mass red giant stars
CoRoT and Kepler observations of red giant stars revealed very rich spectra
of non-radial solar-like oscillations. Of particular interest was the detection
of mixed modes that exhibit significant amplitude, both in the core and at the
surface of the stars. It opens the possibility of probing the internal
structure from their inner-most layers up to their surface along their
evolution on the red giant branch as well as on the red-clump. Our objective is
primarily to provide physical insight into the physical mechanism responsible
for mixed-modes amplitudes and lifetimes. Subsequently, we aim at understanding
the evolution and structure of red giants spectra along with their evolution.
The study of energetic aspects of these oscillations is also of great
importance to predict the mode parameters in the power spectrum. Non-adiabatic
computations, including a time-dependent treatment of convection, are performed
and provide the lifetimes of radial and non-radial mixed modes. We then combine
these mode lifetimes and inertias with a stochastic excitation model that gives
us their heights in the power spectra. For stars representative of CoRoT and
Kepler observations, we show under which circumstances mixed modes have heights
comparable to radial ones. We stress the importance of the radiative damping in
the determination of the height of mixed modes. Finally, we derive an estimate
for the height ratio between a g-type and a p-type mode. This can thus be used
as a first estimate of the detectability of mixed-modes
Numerical constraints on the model of stochastic excitation of solar-type oscillations
Analyses of a 3D simulation of the upper layers of a solar convective
envelope provide constraints on the physical quantities which enter the
theoretical formulation of a stochastic excitation model of solar p modes, for
instance the convective velocities and the turbulent kinetic energy spectrum.
These constraints are then used to compute the acoustic excitation rate for
solar p modes, P. The resulting values are found ~5 times larger than the
values resulting from a computation in which convective velocities and entropy
fluctuations are obtained with a 1D solar envelope model built with the
time-dependent, nonlocal Gough (1977) extension of the mixing length
formulation for convection (GMLT). This difference is mainly due to the assumed
mean anisotropy properties of the velocity field in the excitation region. The
3D simulation suggests much larger horizontal velocities compared to vertical
ones than in the 1D GMLT solar model. The values of P obtained with the 3D
simulation constraints however are still too small compared with the values
inferred from solar observations. Improvements in the description of the
turbulent kinetic energy spectrum and its depth dependence yield further
increased theoretical values of P which bring them closer to the observations.
It is also found that the source of excitation arising from the advection of
the turbulent fluctuations of entropy by the turbulent movements contributes ~
65-75 % to the excitation and therefore remains dominant over the Reynolds
stress contribution. The derived theoretical values of P obtained with the 3D
simulation constraints remain smaller by a factor ~3 compared with the solar
observations. This shows that the stochastic excitation model still needs to be
improved.Comment: 11 pages, 9 figures, accepted for publication in A&
- …
