241 research outputs found

    Cellulases for oligosaccharide synthesis : a preliminary study

    Get PDF
    Crude cellulases, cellobiohydrolase I and endoglucanase I from Trichoderma reesei, were used for preliminary analysis of the potential of cellulases for oligosaccharide synthesis. The reaction products were analysed by ionic chromatography. Synthesis activity could be detected in concentrated aqueous solutions of glucose, cellobiose, maltose and raffinose. CBH I and EG I showed similar activity, with the exception of the case where cellobiose was the substrate. In this case, CBH I originated more ligosaccharides and in higher yields. For the best case among the studied experimental conditions (enzyme: CBH I; substrate: cellubiose; temperature: 4ºC), yields in the order of 40% oligosaccharides were obtained. The effect of the temperature on the reaction yield and kinetics was also studied

    Observational constraints on Rastall's cosmology

    Full text link
    Rastall's theory is a modification of General Relativity, based on the non-conservation of the stress-energy tensor. The latter is encoded in a parameter γ\gamma such that γ=1\gamma = 1 restores the usual νTμν=0\nabla_\nu T^{\mu\nu} = 0 law. We test Rastall's theory in cosmology, on a flat Robertson-Walker metric, investigating a two-fluid model and using the type Ia supernovae Constitution dataset. One of the fluids is pressureless and obeys the usual conservation law, whereas the other is described by an equation of state px=wxρxp_x = w_x\rho_x, with wxw_x constant. The Bayesian analysis of the Constitution set does not strictly constrain the parameter γ\gamma and prefers values of wxw_x close to -1. We then address the evolution of small perturbations and show that they are dramatically unstable if wx1w_x \neq -1 and γ1\gamma \neq 1, i.e. General Relativity is the favored configuration. The only alternative is wx=1w_x = -1, for which the dynamics becomes independent from γ\gamma.Comment: Latex file, 14 pages, 6 figures in eps format. Substantial modifications performed, main conclusions change

    Gravitomagnetism in Metric Theories: Analysis of Earth Satellites Results, and its Coupling with Spin

    Full text link
    Employing the PPN formalism the gravitomagnetic field in different metric theories is considered in the analysis of the LAGEOS results. It will be shown that there are several models that predict exactly the same effect that general relativity comprises. In other words, these Earth satellites results can be taken as experimental evidence that the orbital angular momentum of a body does indeed generate space--time geometry, notwithstanding they do not endow general relativity with an outstanding status among metric theories. Additionally the coupling spin--gravitomagnetic field is analyzed with the introduction of the Rabi transitions that this field produces on a quantum system with spin 1/2. Afterwards, a continuous measurement of the energy of this system is introduced, and the consequences upon the corresponding probabilities of the involved gravitomagnetic field will be obtained. Finally, it will be proved that these proposals allows us, not only to confront against future experiments the usual assumption of the coupling spin--gravotimagnetism, but also to measure some PPN parameters and to obtain functional dependences among them.Comment: 10 page

    Quantum-classical transition in Scale Relativity

    Get PDF
    The theory of scale relativity provides a new insight into the origin of fundamental laws in physics. Its application to microphysics allows us to recover quantum mechanics as mechanics on a non-differentiable (fractal) spacetime. The Schrodinger and Klein-Gordon equations are demonstrated as geodesic equations in this framework. A development of the intrinsic properties of this theory, using the mathematical tool of Hamilton's bi-quaternions, leads us to a derivation of the Dirac equation within the scale-relativity paradigm. The complex form of the wavefunction in the Schrodinger and Klein-Gordon equations follows from the non-differentiability of the geometry, since it involves a breaking of the invariance under the reflection symmetry on the (proper) time differential element (ds - ds). This mechanism is generalized for obtaining the bi-quaternionic nature of the Dirac spinor by adding a further symmetry breaking due to non-differentiability, namely the differential coordinate reflection symmetry (dx^mu - dx^mu) and by requiring invariance under parity and time inversion. The Pauli equation is recovered as a non-relativistic-motion approximation of the Dirac equation.Comment: 28 pages, no figur

    Scalar models for the generalized Chaplygin gas and the structure formation constraints

    Full text link
    The generalized Chaplygin gas model represents an attempt to unify dark matter and dark energy. It is characterized by a fluid with an equation of state p=A/ραp = - A/\rho^\alpha. It can be obtained from a generalization of the DBI action for a scalar, tachyonic field. At background level, this model gives very good results, but it suffers from many drawbacks at perturbative level. We show that, while for background analysis it is possible to consider any value for α\alpha, the perturbative analysis must be restricted to positive values of α\alpha. This restriction can be circumvented if the origin of the generalized Chaplygin gas is traced back to a self-interacting scalar field, instead of the DBI action. But, in doing so, the predictions coming from formation of large scale structures reduce the generalized Chaplygin gas model to a kind of quintessence model, and the unification scenario is lost, if the scalar field is the canonical one. However, if the unification condition is imposed from the beginning as a prior, the model may remain competitive. More interesting results, concerning the unification program, are obtained if a non-canonical self-interacting scalar field, inspired by Rastall's theory of gravity, is imposed. In this case, an agreement with the background tests is possible.Comment: Latex file, 25 pages, 33 figures in eps format. New section on scalar models. Accepted for publication in Gravitation&Cosmolog

    Note on the Evolution of the Gravitational Potential in Rastall Scalar Field Theories

    Full text link
    We investigate the evolution of the gravitational potential in Rastall scalar field theories. In a single component model a consistent perturbation theory, formulated in the newtonian gauge, is possible only for γ=1\gamma = 1, which is the General Relativity limit. On the other hand, the addition of another canonical fluid component allows also to consider the case γ1\gamma \neq 1.Comment: 16 pages, 3 figures, Sections 2 and 5 enlarged, accepted for publication in Physics Letters

    Analyzing three-player quantum games in an EPR type setup

    Get PDF
    We use the formalism of Clifford Geometric Algebra (GA) to develop an analysis of quantum versions of three-player non-cooperative games. The quantum games we explore are played in an Einstein-Podolsky-Rosen (EPR) type setting. In this setting, the players' strategy sets remain identical to the ones in the mixed-strategy version of the classical game that is obtained as a proper subset of the corresponding quantum game. Using GA we investigate the outcome of a realization of the game by players sharing GHZ state, W state, and a mixture of GHZ and W states. As a specific example, we study the game of three-player Prisoners' Dilemma.Comment: 21 pages, 3 figure
    corecore