6,263 research outputs found
Improved multimedia server I/O subsystems
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.---- Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.The main function of a continuous media server is to concurrently stream data from storage to multiple clients over a network. The resulting streams will congest the host CPU bus, reducing access to the system's main memory, which degrades CPU performance. The purpose of this paper is to investigate ways of improving I/O subsystems of continuous media sewers. Several improved I/O subsystem architectures are presented and their performances evaluated. The proposed architectures use an existing device, namely the Intel i960RP processor. The objective of using an I/O processor is to move the stream and its control from the host processor and the main memory. The ultimate aim is to identify the requirements for an integrated I/O subsystem for a high performance scalable media-on-demand server
Dynamics and structure of an aging binary colloidal glass
We study aging in a colloidal suspension consisting of micron-sized particles
in a liquid. This system is made glassy by increasing the particle
concentration. We observe samples composed of particles of two sizes, with a
size ratio of 1:2.1 and a volume fraction ratio 1:6, using fast laser scanning
confocal microscopy. This technique yields real-time, three-dimensional movies
deep inside the colloidal glass. Specifically, we look at how the size, motion
and structural organization of the particles relate to the overall aging of the
glass. Particles move in spatially heterogeneous cooperative groups. These
mobile regions tend to be richer in small particles, and these small particles
facilitate the motion of nearby particles of both sizes.Comment: 7 pages; submitted to Phys. Rev. E. Revised with 1 new figure,
improved tex
Structure of rabbit liver fructose 1,6-bisphosphatase at 2.3 Å resolution
The three-dimensional structure of the R form of rabbit liver fructose 1,6-bisphosphatase (Fru-1,6-Pase; E.C. 3.1.3.11) has been determined by a combination of heavy-atom and molecular-replacement methods. A model, which includes 2394 protein atoms and 86 water molecules, has been refined at 2.3 Å resolution to a crystallographic R factor of 0.177. The root-mean-square deviations of bond distances and angles from standard geometry are 0.012 Å and 1.7°, respectively. This structural result, in conjunction with recently redetermined amino-acid sequence data, unequivocally establishes that the rabbit liver enzyme is not an aberrant bisphosphatase as once believed, but is indeed homologous to other Fru-1,6-Pases. The root-mean-square deviation of the C atoms in the rabbit liver structure from the homologous atoms in the pig kidney structure complexed with the product, fructose 6-phosphate, is 0.7 Å. Fru-1,6-Pases are homotetramers, and the rabbit liver protein crystallizes in space group I222 with one monomer in the asymmetric unit. The structure contains a single endogenous Mg<sup>2+</sup> ion coordinated by Glu97, Asp118, Asp121 and Glu280 at the site designated metal site 1 in pig kidney Fru-1,6-Pase R-form complexes. In addition, two sulfate ions, which are found at the positions normally occupied by the 6-phosphate group of the substrate, as well as the phosphate of the allosteric inhibitor AMP appear to provide stability. Met177, which has hydrophobic contacts with the adenine moiety of AMP in pig kidney T-form complexes, is replaced by glycine. Binding of a non-hydrolyzable substrate analog,<sup> β</sup>-methyl-fructose 1,6-bisphosphate, at the catalytic site is also examined
Vacuum Energy Density for Massless Scalar Fields in Flat Homogeneous Spacetime Manifolds with Nontrivial Topology
Although the observed universe appears to be geometrically flat, it could
have one of 18 global topologies. A constant-time slice of the spacetime
manifold could be a torus, Mobius strip, Klein bottle, or others. This global
topology of the universe imposes boundary conditions on quantum fields and
affects the vacuum energy density via Casimir effect. In a spacetime with such
a nontrivial topology, the vacuum energy density is shifted from its value in a
simply-connected spacetime. In this paper, the vacuum expectation value of the
stress-energy tensor for a massless scalar field is calculated in all 17
multiply-connected, flat and homogeneous spacetimes with different global
topologies. It is found that the vacuum energy density is lowered relative to
the Minkowski vacuum level in all spacetimes and that the stress-energy tensor
becomes position-dependent in spacetimes that involve reflections and
rotations.Comment: 25 pages, 11 figure
Transitional random matrix theory nearest-neighbor spacing distributions
This paper presents a study of the properties of a matrix model that was
introduced to describe transitions between all Wigner surmises of Random Matrix
theory. New results include closed-form exact analytical expressions for the
transitional probability density functions, as well as suitable analytical
approximations for cases not amenable to explicit representation
Density fluctuations and the structure of a nonuniform hard sphere fluid
We derive an exact equation for density changes induced by a general external
field that corrects the hydrostatic approximation where the local value of the
field is adsorbed into a modified chemical potential. Using linear response
theory to relate density changes self-consistently in different regions of
space, we arrive at an integral equation for a hard sphere fluid that is exact
in the limit of a slowly varying field or at low density and reduces to the
accurate Percus-Yevick equation for a hard core field. This and related
equations give accurate results for a wide variety of fields
Survey of classical density functionals for modelling hydrogen physisorption at 77 K
This work surveys techniques based on classical density functionals for modeling the quantum dispersion of physisorbed hydrogen at 77 K. Two such techniques are examined in detail. The first is based on the "open ring approximation" (ORA) of Broukhno et al., and it is compared with a technique based on the semiclassical approximation of Feynman and Hibbs (FH). For both techniques, a standard classical density functional is used to model hydrogen molecule-hydrogen molecule (i.e., excess) interactions. The three-dimensional (3D) quantum harmonic oscillator (QHO) system and a model of molecular hydrogen adsorption into a graphitic slit pore at 77 K are used as benchmarks. Density functional results are compared with path-integral Monte Carlo simulations and with exact solutions for the 3D QHO system. It is found that neither of the density functional treatments are entirely satisfactory. However, for hydrogen physisorption studies at 77 K the ORA based technique is generally superior to the FH based technique due to a fortunate cancellation of errors in the density functionals used. But, if more accurate excess functionals are used, the FH technique would be superior
Exact Polynomial Eigenmodes for Homogeneous Spherical 3-Manifolds
Observational data hints at a finite universe, with spherical manifolds such
as the Poincare dodecahedral space tentatively providing the best fit.
Simulating the physics of a model universe requires knowing the eigenmodes of
the Laplace operator on the space. The present article provides explicit
polynomial eigenmodes for all globally homogeneous 3-manifolds: the Poincare
dodecahedral space S3/I*, the binary octahedral space S3/O*, the binary
tetrahedral space S3/T*, the prism manifolds S3/D_m* and the lens spaces
L(p,1).Comment: v3. Final published version. 27 pages, 1 figur
Properties of cage rearrangements observed near the colloidal glass transition
We use confocal microscopy to study the motions of particles in concentrated
colloidal systems. Near the glass transition, diffusive motion is inhibited, as
particles spend time trapped in transient ``cages'' formed by neighboring
particles. We measure the cage sizes and lifetimes, which respectively shrink
and grow as the glass transition approaches. Cage rearrangements are more
prevalent in regions with lower local concentrations and higher disorder.
Neighboring rearranging particles typically move in parallel directions,
although a nontrivial fraction move in anti-parallel directions, usually from
pairs of particles with initial separations corresponding to the local maxima
and minima of the pair correlation function , respectively.Comment: 5 pages, 4 figures; text & figures revised in v
- …
