521 research outputs found

    Damping of sound waves in superfluid nucleon-hyperon matter of neutron stars

    Full text link
    We consider sound waves in superfluid nucleon-hyperon matter of massive neutron-star cores. We calculate and analyze the speeds of sound modes and their damping times due to the shear viscosity and non-equilibrium weak processes of particle transformations. For that, we employ the dissipative relativistic hydrodynamics of a superfluid nucleon-hyperon mixture, formulated recently [M.E. Gusakov and E.M. Kantor, Phys. Rev. D78, 083006 (2008)]. We demonstrate that the damping times of sound modes calculated using this hydrodynamics and the ordinary (nonsuperfluid) one, can differ from each other by several orders of magnitude.Comment: 15 pages, 5 figures, Phys. Rev. D accepte

    Quantam wave turbulence

    Get PDF
    The nonlinear quantum kinetic equation for the interaction of sound waves is solved via analytic and numerical techniques. In the classical regime energy cascades to higher frequency (ω) according to the steady-state power law ω-3/2. In the quantum limit, the system prefers a reverse cascade of energy which follows the power law ω-6. Above a critical flux, a new type of spectrum appears which is neither self-similar nor close to equilibrium. This state of nonlinear quantum wave turbulence represents a flow of energy directly from the classical source to the quantum degrees of freedom

    First and Second Sound Modes of a Bose-Einstein Condensate in a Harmonic Trap

    Full text link
    We have calculated the first and second sound modes of a dilute interacting Bose gas in a spherical trap for temperatures (0.6<T/Tc<1.20.6<T/T_{c}<1.2) and for systems with 10410^4 to 10810^8 particles. The second sound modes (which exist only below TcT_{c}) generally have a stronger temperature dependence than the first sound modes. The puzzling temperature variations of the sound modes near TcT_{c} recently observed at JILA in systems with 10310^3 particles match surprisingly well with those of the first and second sound modes of much larger systems.Comment: a shorten version, more discussions are given on the nature of the second sound. A long footnote on the recent work of Zaremba, Griffin, and Nikuni (cond-mat/9705134) is added, the spectrum of the (\ell=1, n_2=0) mode is included in fig.

    The determinants of trust: findings from large, representative samples in six OECD countries

    Get PDF
    Trust is key for economic and social development. But why do we trust others? We study the motives behind trust in strangers using an experimental trust game played by 7236 participants, in six samples representative of the general populations of Germany, Italy, Japan, Luxembourg, the UK and the USA. We examine the broadest range of potential determinants of trustor sending to date, including risk tolerance, preferences for redistribution, and conformity. We find that even though self-interest, indicated by expected returns, is relevant for trustor behaviour, the most important correlate of sending is participants' altruism or fairness concerns, as measured by giving in a dictator game. We also find that in our large and representative sample, behaviour in the trust game and responses in a trust survey are significantly correlated, and that similar correlates—altruism in particular—are relevant for both

    Bulk viscosity of superfluid neutron stars

    Full text link
    The hydrodynamics, describing dynamical effects in superfluid neutron stars, essentially differs from the standard one-fluid hydrodynamics. In particular, we have four bulk viscosity coefficients in the theory instead of one. In this paper we calculate these coefficients, for the first time, assuming they are due to non-equilibrium beta-processes (such as modified or direct Urca process). The results of our analysis are used to estimate characteristic damping times of sound waves in superfluid neutron stars. It is demonstrated that all four bulk viscosity coefficients lead to comparable dissipation of sound waves and should be considered on the same footing.Comment: 11 pages, 1 figure, this version with some minor stylistic changes is published in Phys. Rev.

    Sonoluminescing air bubbles rectify argon

    Get PDF
    The dynamics of single bubble sonoluminescence (SBSL) strongly depends on the percentage of inert gas within the bubble. We propose a theory for this dependence, based on a combination of principles from sonochemistry and hydrodynamic stability. The nitrogen and oxygen dissociation and subsequent reaction to water soluble gases implies that strongly forced air bubbles eventually consist of pure argon. Thus it is the partial argon (or any other inert gas) pressure which is relevant for stability. The theory provides quantitative explanations for many aspects of SBSL.Comment: 4 page

    Bulk viscosity of superfluid hyperon stars

    Full text link
    We calculated bulk viscosity due to non-equilibrium weak processes in superfluid nucleon-hyperon matter of neutron stars. For that, the dissipative relativistic hydrodynamics, formulated in paper [1] for superfluid mixtures, was extended to the case when both nucleons and hyperons are superfluid. It was demonstrated that in the most general case (when neutrons, protons, Lambda, and Sigma^{-} hyperons are superfluid), non-equilibrium weak processes generate sixteen bulk viscosity coefficients, with only three of them being independent. In addition, we corrected an inaccuracy in a widely used formula for the bulk viscosity of non-superfluid nucleon-hyperon matter.Comment: 22 pages, 2 figure

    8.9 hr rotation in the partly burnt runaway stellar remnant LP 40-365 (GD 492)

    Get PDF
    We report the detection of 8.914 hr variability in both optical and ultraviolet light curves of LP 40-365 (also known as GD 492), the prototype for a class of partly burnt runaway stars that have been ejected from a binary due to a thermonuclear supernova event. We first detected this 1.0% amplitude variation in optical photometry collected by the Transiting Exoplanet Survey Satellite (TESS). Reanalysis of observations from the Hubble Space Telescope at the TESS period and ephemeris reveal a 5.8% variation in the ultraviolet of this 9800 K stellar remnant. We propose that this 8.914 hr photometric variation reveals the current surface rotation rate of LP 40-365, and is caused by some kind of surface inhomogeneity rotating in and out of view, though a lack of observed Zeeman splitting puts an upper limit on the magnetic field of <20 kG. We explore ways in which the present rotation period can constrain progenitor scenarios if angular momentum was mostly conserved, which suggests that the survivor LP 40-365 was not the donor star but was most likely the bound remnant of a mostly disrupted white dwarf that underwent advanced burning from an underluminous (Type Iax) supernova.Peer ReviewedPostprint (published version
    • …
    corecore