104 research outputs found

    Evidence for tidal interaction and merger as the origin of galaxy morphology evolution in compact groups

    Get PDF
    We present the results of a morphological study based on NIR images of 25 galaxies, with different levels of nuclear activity, in 8 Compact Groups of Galaxies (CGs). We perform independently two different analysis: a isophotal study and a study of morphological asymmetries. The results yielded by the two analysis are highly consistent. For the first time, it is possible to show that deviations from pure ellipses are produced by inhomogeneous stellar mass distributions related to galaxy interactions and mergers. We find evidence of mass asymmetries in 74% of the galaxies in our sample. In 59% of these cases, the asymmetries come in pairs, and are consistent with tidal effects produced by the proximity of companion galaxies. The symmetric galaxies are generally small in size or mass, inactive, and have an early-type morphology. In 20% of the galaxies we find evidence for cannibalism. In 36% of the early-type galaxies the color gradient is positive (blue nucleus) or flat. Summing up these results, as much as 52% of the galaxies in our sample could show evidence of an on going or past mergers. Our observations suggest that galaxies in CGs merge more frequently under ``dry'' conditions. The high frequency of interacting and merging galaxies observed in our study is consistent with the bias of our sample towards CGs of type B, which represents the most active phase in the evolution of the groups. In these groups we also find a strong correlation between asymmetries and nuclear activity in early-type galaxies. This correlation allows us to identify tidal interactions and mergers as the cause of galaxy morphology transformation in CGs.[abridge]Comment: 64 pages, 35 figures. Accepted for publication in Ap

    The UK prevalence of hereditary haemorrhagic telangiectasia and its association with sex, socioeconomic status and region of residence: a population-based study

    Get PDF
    Background Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant genetic disorder of aberrant blood vessel development characterised by arteriovenous malformations. HHT is associated with significant morbidity due to complications including epistaxis, gastrointestinal bleeding and stroke. We explored the hypothesis that a diagnosis of HHT is associated with sex, socioeconomic status and geographical location.Methods We used The Health Improvement Network, a longitudinal, computerised general practice database covering 5% of the UK population to calculate prevalence estimates for HHT stratified by age, sex, socioeconomic status and geographical location.Results The 2010 UK point prevalence for HHT was 1.06/10 000 person years (95% CI 0.95 to 1.17) or 1 in 9400 individuals. The diagnosed prevalence of HHT was significantly higher in women compared with men (adjusted prevalence rate ratio (PRR) 1.53, 95% CI 1.24 to 1.88) and in those from the most affluent socioeconomic group compared with the least (adjusted PRR 1.74, 95% CI 1.14 to 2.64). The PRR varied between different regions of the UK, being highest in the South West and lowest in the West Midlands (adjusted PRR for former compared with latter 1.86, 95% CI 1.61 to 2.15).Conclusions HHT prevalence is more common in the UK population than previously demonstrated, though this updated figure is still likely to be an underestimate. HHT appears to be significantly under-diagnosed in men, which is likely to reflect their lower rates of consultation with primary care services. There is under-diagnosis in patients from lower socioeconomic groups and a marked variation in the prevalence of diagnosis between different geographical regions across the UK that requires further investigation

    What makes a galaxy radio-loud?

    Full text link
    We compare the Spectral Energy Distribution (SED) of radio-loud and radio-quiet AGNs in three different samples observed with SDSS: radio-loud AGNs (RLAGNs), Low Luminosity AGNs (LLAGNs) and AGNs in isolated galaxies (IG-AGNs). All these galaxies have similar optical spectral characteristics. The median SED of the RLAGNs is consistent with the characteristic SED of quasars, while that of the LLAGNs and IG-AGNs are consistent with the SED of LINERs, with a lower luminosity in the IG-AGNs than in the LLAGNs. We infer the masses of the black holes (BHs) from the bulge masses. These increase from the IG-AGNs to the LLAGNs and are highest for the RLAGNs. All these AGNs show accretion rates near or slightly below 10% of the Eddington limit, the differences in luminosity being solely due to different BH masses. Our results suggests there are two types of AGNs, radio quiet and radio loud, differing only by the mass of their bulges or BHs.Comment: 3 pages, 3 figures; to appear in Proceedings of IAU Symposium No. 284, The Spectral Energy Distribution of Galaxies (SED2011), Preston, UK, 5-9 sep. 201

    3C 57 as an Atypical Radio-Loud Quasar: Implications for the Radio-Loud/Radio-Quiet Dichotomy

    Get PDF
    Lobe-dominated radio-loud (LD RL) quasars occupy a restricted domain in the 4D Eigenvector 1 (4DE1) parameter space which implies restricted geometry/physics/kinematics for this subclass compared to the radio-quiet (RQ) majority of quasars. We discuss how this restricted domain for the LD RL parent population supports the notion for a RQ-RL dichotomy among Type 1 sources. 3C 57 is an atypical RL quasar that shows both uncertain radio morphology and falls in a region of 4DE1 space where RL quasars are rare. We present new radio flux and optical spectroscopic measures designed to verify its atypical optical/UV spectroscopic behaviour and clarify its radio structure. The former data confirms that 3C 57 falls off the 4DE1 quasar "main sequence" with both extreme optical FeII emission (R_{FeII} ~ 1) and a large CIV 1549 profile blueshift (~ -1500 km/s). These parameter values are typical of extreme Population A sources which are almost always RQ. New radio measures show no evidence for flux change over a 50+ year timescale consistent with compact steep-spectrum (CSS or young LD) over core-dominated morphology. In the 4DE1 context where LD RL are usually low L/L_{Edd} quasars we suggest that 3C 57 is an evolved RL quasar (i.e. large Black Hole mass) undergoing a major accretion event leading to a rejuvenation reflected by strong FeII emission, perhaps indicating significant heavy metal enrichment, high bolometric luminosity for a low redshift source and resultant unusually high Eddington ratio giving rise to the atypical CIV 1549.Comment: Accepted for publication in MNRAS; 10 pages, 6 figures, 4 table

    WASP-86b and WASP-102b: super-dense versus bloated planets

    Get PDF
    We report the discovery of two transiting planetary systems: a super dense, sub-Jupiter mass planet WASP-86b (Mpl = 0.82 ± 0.06 MJ; Rpl = 0.63 ± 0.01 RJ), and a bloated, Saturn-like planet WASP-102b (Mpl = 0.62 ± 0.04 MJ; Rpl = 1.27 ± 0.03 RJ). They orbit their host star every ∼5.03, and ∼2.71 days, respectively. The planet hosting WASP-86 is a F7 star (Teff = 6330±110 K, [Fe/H] = +0.23 ± 0.14 dex, and age ∼0.8–1 Gyr); WASP-102 is a G0 star (Teff = 5940±140 K, [Fe/H] = −0.09± 0.19 dex, and age ∼1 Gyr). These two systems highlight the diversity of planetary radii over similar masses for giant planets with masses between Saturn and Jupiter. WASP-102b shows a larger than model-predicted radius, indicating that the planet is receiving a strong incident flux which contributes to the inflation of its radius. On the other hand, with a density of ρpl = 3.24± 0.3 ρJ, WASP-86b is the densest gas giant planet among planets with masses in the range 0.05 Mpl J. With a stellar mass of 1.34 M⊙ and [Fe/H]= +0.23 dex, WASP-86 could host additional massive and dense planets given that its protoplanetary disc is expected to also have been enriched with heavy elements. In order to match WASP-86b’s density, an extrapolation of theoretical models predicts a planet composition of more than 80% in heavy elements (whether confined in a core or mixed in the envelope). This fraction corresponds to a core mass of approximately 210M⊕ for WASP-86b’s mass of Mpl∼260 M⊕. Only planets with masses larger than about 2 MJ have larger densities than that of WASP-86b, making it exceptional in its mass range
    corecore