5 research outputs found

    Routine MRI findings of the asymptomatic foot in diabetic patients with unilateral Charcot foot

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Imaging studies of bones in patients with sensory deficits are scarce.</p> <p>Aim</p> <p>To investigate bone MR images of the lower limb in diabetic patients with severe sensory polyneuropathy, and in control subjects without sensory deficits.</p> <p>Methods</p> <p>Routine T1 weighted and T2-fat-suppressed-STIR-sequences without contrast media were performed of the asymptomatic foot in 10 diabetic patients with polyneuropathy and unilateral inactive Charcot foot, and in 10 matched and 10 younger, non-obese unmatched control subjects. Simultaneously, a Gadolinium containing phantom was also assessed for reference. T1 weighted signal intensity (SI) was recorded at representative regions of interest at the peritendineal soft tissue, the tibia, the calcaneus, and at the phantom. Any abnormal skeletal morphology was also recorded.</p> <p>Results</p> <p>Mean SI at the soft tissue, the calcaneus, and the tibia, respectively, was 105%, 105% and 84% of that at the phantom in the matched and unmatched control subjects, compared to 102% (soft tissue), 112% (calcaneus) and 64% (tibia) in the patients; differences of tibia vs. calcaneus or soft tissue were highly significant (p < 0.005). SI at the tibia was lower in the patients than in control subjects (p < 0.05). Occult traumatic skeletal lesions were found in 8 of the 10 asymptomatic diabetic feet (none in the control feet).</p> <p>Conclusion</p> <p>MR imaging did not reveal grossly abnormal bone marrow signalling in the limbs with severe sensory polyneuropathy, but occult sequelae of previous traumatic injuries.</p

    Characterization and hazard evaluation of bottom ash produced from incinerated hospital waste.

    No full text
    The uncontrolled disposal of bottom ash from incineration units of hazardous and infected wastes in many countries causes significant scale damage, since it contaminates the soil as well as surface and underground waters, putting both the environment and the public health at risk. In view of the above, a study of bottom ash produced at a hospital medical waste incinerator (HMWI) in Greece was conducted, in order to detect the presence of heavy metals and therefore assess its toxicity; this led to conclusions on the possible contamination of the soil as well as surface and underground waters as a result of its disposal in landfills. The study was conducted at a typical general hospital with 500-bed capacity. About 880 kg of infectious waste coming from a general hospital with all medical departments are pyrolyticly incinerated at the HMWI every day. International literature contains many references to research that characterizes bottom ash as either dangerous, not dangerous, or inert, in an effort to diagnose its proper management and disposal. For this reason, this study focuses on the characterization of bottom ash. Samples were collected from a combustion chamber, over a period of 1 year, and a series of tests were conducted, including an analysis of particle size distribution, morphology, mineralogical and chemical composition, heavy metal leaching behavior and PCDD/F

    A life cycle analysis of ionizing radiation shielding construction systems in healthcare buildings

    No full text
    Optimization of material resources, energy efficiency and reduction of environmental impact are basic aspects in selection of a construction system. The aim of this study is to evaluate the environmental impact generated by different shielding systems for walls of an X-ray room in healthcare buildings. Eight commercial construction systems for anti-X shielding were analysed. A Life Cycle Assessment (LCA) was performed by SimaPro using the Ecoinvent database, and a single-score damage category analysis was performed for midpoint and endpoint levels. Prices of installation and working time employed in the construction of a functional unit of each system were obtained. Solutions with clay brick, cast-in-place reinforced concrete and sprayed concrete were the most favourable for the different categories. Sprayed concrete obtained 6.739 points/m² of against 165.12 points/m² of rolled steel option. The damage to human health occupies between 41% and 87% of the total impact in the protection areas. The impact category of human toxicity is also the broadest in the midpoint approach. Considering time and cost of implementation, clay brick solutions proved to be the most favourable, along with cast-in-place reinforced concrete and barite concrete. System #6 is the most environmentally friendly, 1.6 times less than the next one (which is #4), although its unit price is 1.94 times the cheapest (which is #2) and its execution time is 1.89 times the lowest (which is #2 again). The knowledge generated in this study will improve investment decision making for the planning departments of the Sanitary Systems, obtaining an economic, social and environmental benefit. The main novelty of the work lies in the object of the study (X-ray room) as well as in the integration of LCA and economic aspects
    corecore