5,450 research outputs found
Spacetime Defects: von K\'arm\'an vortex street like configurations
A special arrangement of spinning strings with dislocations similar to a von
K\'arm\'an vortex street is studied. We numerically solve the geodesic
equations for the special case of a test particle moving along twoinfinite rows
of pure dislocations and also discuss the case of pure spinning defects.Comment: 9 pages, 2figures, CQG in pres
A study of transport suppression in an undoped AlGaAs/GaAs quantum dot single-electron transistor
We report a study of transport blockade features in a quantum dot
single-electron transistor, based on an undoped AlGaAs/GaAs heterostructure. We
observe suppression of transport through the ground state of the dot, as well
as negative differential conductance at finite source-drain bias. The
temperature and magnetic field dependence of these features indicate the
couplings between the leads and the quantum dot states are suppressed. We
attribute this to two possible mechanisms: spin effects which determine whether
a particular charge transition is allowed based on the change in total spin,
and the interference effects that arise from coherent tunneling of electrons in
the dot
Primordial Entropy Production and Lambda-driven Inflation from Quantum Einstein Gravity
We review recent work on renormalization group (RG) improved cosmologies
based upon a RG trajectory of Quantum Einstein Gravity (QEG) with realistic
parameter values. In particular we argue that QEG effects can account for the
entire entropy of the present Universe in the massless sector and give rise to
a phase of inflationary expansion. This phase is a pure quantum effect and
requires no classical inflaton field.Comment: 12 pages, 4 figures, IGCG-07 Pun
On the gravitational field of static and stationary axial symmetric bodies with multi-polar structure
We give a physical interpretation to the multi-polar Erez-Rozen-Quevedo
solution of the Einstein Equations in terms of bars. We find that each
multi-pole correspond to the Newtonian potential of a bar with linear density
proportional to a Legendre Polynomial. We use this fact to find an integral
representation of the function. These integral representations are
used in the context of the inverse scattering method to find solutions
associated to one or more rotating bodies each one with their own multi-polar
structure.Comment: To be published in Classical and Quantum Gravit
Translocation Dynamics with Attractive Nanopore-Polymer Interactions
Using Langevin dynamics simulations, we investigate the influence of
polymer-pore interactions on the dynamics of biopolymer translocation through
nanopores. We find that an attractive interaction can significantly change the
translocation dynamics. This can be understood by examining the three
components of the total translocation time
corresponding to the initial filling of the pore, transfer of polymer from the
\textit{cis} side to the \textit{trans} side, and emptying of the pore,
respectively. We find that the dynamics for the last process of emptying of the
pore changes from non-activated to activated in nature as the strength of the
attractive interaction increases, and becomes the dominant
contribution to the total translocation time for strong attraction. This leads
to a new dependence of as a function of driving force and chain length.
Our results are in good agreement with recent experimental findings, and
provide a possible explanation for the different scaling behavior observed in
solid state nanopores {\it vs.} that for the natural -hemolysin
channel.Comment: 8 pages, 11 figure
Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor
Radio frequency reflectometry is demonstrated in a sub-micron undoped
AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive
candidates to study single electron phenomena due to their charge stability and
robust electronic properties after thermal cycling. However these devices
require a large top-gate which is unsuitable for the fast and sensitive radio
frequency reflectometry technique. Here we demonstrate rf reflectometry is
possible in an undoped SET.Comment: Four pages, three figures, one supplementary fil
The Empty Promise of Estate Tax Repeal
The terms of the debate over the estate tax have been framed largely by abolitionists who have propounded an antitax message that portrays the estate tax as unambiguously harmful and threatening to ordinary families and small businesses. The attack on the estate tax is linked to a larger agenda of eliminating taxes on capital and capital income and dismantling the progressive elements of the federal tax system. The slogan of estate tax repeal, while effective in mobilizing antitax sentiment, makes no sense as a matter of tax policy because it downplays revenue costs, distributional effects, administrative concerns, and consequences for the rest of the tax system. The 2001 Act illustrates the gap between the abolitionists\u27 simplistic antitax agenda and the complex reality of tradeoffs among competing tax and spending priorities. The estate tax cuts enacted in 2001 imply large revenue losses as well as a shift in tax burdens from the very rich to the middle class and from current taxpayers to future taxpayers. This appears to be a step in precisely the wrong direction, given growing inequalities of income and wealth and a looming fiscal gap
Polymer translocation out of confined environments
We consider the dynamics of polymer translocation out of confined
environments. Analytic scaling arguments lead to the prediction that the
translocation time scales like for translocation out of a planar
confinement between two walls with separation into a 3D environment, and
for translocation out of two strips with separation
into a 2D environment. Here, is the chain length, and
are the Flory exponents in 3D and 2D, and is the scaling exponent of
translocation velocity with , whose value for the present choice of
parameters is based on Langevin dynamics simulations. These
scaling exponents improve on earlier predictions.Comment: 5 pages, 5 figures. To appear in Phys. Rev.
Quantum key distribution using a triggered quantum dot source emitting near 1.3 microns
We report the distribution of a cryptographic key, secure from photon number
splitting attacks, over 35 km of optical fiber using single photons from an
InAs quantum dot emitting ~1.3 microns in a pillar microcavity. Using below
GaAs-bandgap optical excitation, we demonstrate suppression of multiphoton
emission to 10% of the Poissonian level without detector dark count
subtraction. The source is incorporated into a phase encoded interferometric
scheme implementing the BB84 protocol for key distribution over standard
telecommunication optical fiber. We show a transmission distance advantage over
that possible with (length-optimized) uniform intensity weak coherent pulses at
1310 nm in the same system.Comment: 4 pages, 4 figure
- …