95 research outputs found

    Thermal Equilibrium Curves and Turbulent Mixing in Keplerian Accretion Disks

    Get PDF
    We consider vertical heat transport in Keplerian accretion disks, including the effects of radiation, convection, and turbulent mixing driven by the Balbus-Hawley instability, in astronomical systems ranging from dwarf novae (DNe), and soft X-ray transients (SXTs), to active galactic nuclei (AGN). We propose a modified, anisotropic form of mixing-length theory, which includes radiative and turbulent damping. We also include turbulent heat transport, which acts everywhere within disks, regardless of whether or not they are stably stratified, and can move entropy in either direction. We have generated a series of vertical structure models and thermal equilibrium curves using the scaling law for the viscosity parameter α\alpha suggested by the exponential decay of the X-ray luminosity in SXTs. We have also included equilibrium curves for DNe using an α\alpha which is constant down to a small magnetic Reynolds number (∌104\sim 10^4). Our models indicate that weak convection is usually eliminated by turbulent radial mixing. The substitution of turbulent heat transport for convection is more important on the unstable branches of thermal equilibrium S-curves when α\alpha is larger. The low temperature turnover points ÎŁmax\Sigma_{max} on the equilibrium S-curves are significantly reduced by turbulent mixing in DNe and SXT disks. However, in AGN disks the standard mixing-length theory for convection is still a useful approximation when we use the scaling law for α\alpha, since these disks are very thin at the relevant radii. In accordance with previous work, we find that constant α\alpha models give almost vertical S-curves in the Σ−T\Sigma-T plane and consequently imply very slow, possibly oscillating, cooling waves.Comment: 43 pages, 12 figures, 6 tables, to be published in Ap

    Parameter estimation in spatially extended systems: The Karhunen-Loeve and Galerkin multiple shooting approach

    Get PDF
    Parameter estimation for spatiotemporal dynamics for coupled map lattices and continuous time domain systems is shown using a combination of multiple shooting, Karhunen-Loeve decomposition and Galerkin's projection methodologies. The resulting advantages in estimating parameters have been studied and discussed for chaotic and turbulent dynamics using small amounts of data from subsystems, availability of only scalar and noisy time series data, effects of space-time parameter variations, and in the presence of multiple time-scales.Comment: 11 pages, 5 figures, 4 Tables Corresponding Author - V. Ravi Kumar, e-mail address: [email protected]

    Optimal atomic detection by control of detuning and spatial dependence of laser intensity

    Full text link
    Atomic detection by fluorescence may fail because of reflection from the laser or transmission without excitation. The detection probability for a given velocity range may be improved by controlling the detuning and the spatial dependence of the laser intensity. A simple optimization method is discussed and exemplified

    The cross-entropy method for continuous multi-extremal optimization

    Get PDF
    In recent years, the cross-entropy method has been successfully applied to a wide range of discrete optimization tasks. In this paper we consider the cross-entropy method in the context of continuous optimization. We demonstrate the effectiveness of the cross-entropy method for solving difficult continuous multi-extremal optimization problems, including those with non-linear constraints

    Hybrid optimization method with general switching strategy for parameter estimation

    Get PDF
    This article is available from: http://www.biomedcentral.com/1752-0509/2/26[Background] Modeling and simulation of cellular signaling and metabolic pathways as networks of biochemical reactions yields sets of non-linear ordinary differential equations. These models usually depend on several parameters and initial conditions. If these parameters are unknown, results from simulation studies can be misleading. Such a scenario can be avoided by fitting the model to experimental data before analyzing the system. This involves parameter estimation which is usually performed by minimizing a cost function which quantifies the difference between model predictions and measurements. Mathematically, this is formulated as a non-linear optimization problem which often results to be multi-modal (non-convex), rendering local optimization methods detrimental.[Results] In this work we propose a new hybrid global method, based on the combination of an evolutionary search strategy with a local multiple-shooting approach, which offers a reliable and efficient alternative for the solution of large scale parameter estimation problems.[Conclusion] The presented new hybrid strategy offers two main advantages over previous approaches: First, it is equipped with a switching strategy which allows the systematic determination of the transition from the local to global search. This avoids computationally expensive tests in advance. Second, using multiple-shooting as the local search procedure reduces the multi-modality of the non-linear optimization problem significantly. Because multiple-shooting avoids possible spurious solutions in the vicinity of the global optimum it often outperforms the frequently used initial value approach (single-shooting). Thereby, the use of multiple-shooting yields an enhanced robustness of the hybrid approach.This work was supported by the European Community as part of the FP6 COSBICS Project (STREP FP6-512060), the German Federal Ministry of Education and Research, BMBF-project FRISYS (grant 0313921) and Xunta de Galicia (PGIDIT05PXIC40201PM).Peer reviewe

    Numerical solution of a pursuit-evasion differential game involving two spacecraft in low earth orbit

    Get PDF
    This paper considers a spacecraft pursuit-evasion problem taking place in low earth orbit. The problem is formulated as a zero-sum differential game in which there are two players, a pursuing spacecraft that attempts to minimize a payoff, and an evading spacecraft that attempts to maximize the same payoff. We introduce two associated optimal control problems and show that a saddle point for the differential game exists if and only if the two optimal control problems have the same optimal value. Then, on the basis of this result, we propose two computational methods for determining a saddle point solution: a semi-direct control parameterization method (SDCP method), which is based on a piecewise-constant control approximation scheme, and a hybrid method, which combines the new SDCP method with the multiple shooting method. Simulation results show that the proposed SDCP and hybrid methodsare superior to the semi-direct collocation nonlinear programming method (SDCNLP method), which is widely used to solve pursuit-evasion problems in the aerospace field

    Injectable self inflating hydrogel pellet expanders for the treatment of orbital volume deficiency in congenital microphthalmos: preliminary results with a new therapeutic approach

    No full text
    BACKGROUND/AIM: Children with congenital microphthalmos are usually able to wear an eye prosthesis but the cosmetic aspect is determined by the size of the orbital volume deficiency. Instead of using a ball shaped standard hydrogel expander or a regular orbital implant, which would necessitate enucleation of the microphthalmic eye, this study investigates the feasibility of volume augmentation with injectable pellet expanders, as formerly suggested for acquired anophthalmos in adults only. METHOD: The pellet expander is made from a self inflating hydrogel that takes up water by osmosis (dry state: length 8 mm, diameter 2 mm, volume 0.025 ml; in vitro hydrated state after around 1 day: length 15 mm, diameter 4 mm, volume 0.24 ml; swelling capacity: 9.6‐fold). This report concerns six patients (two girls and four boys) aged between 4 months and 42 months with unilateral microphthalmos who were treated by injection of 4–14 pellet expanders into the retrobulbar orbital tissue. Volume augmentation was 1–3.5 ml. The pellets were injected using a customised trocar and placed behind the microphthalmos directed into the intraconal space. RESULTS: The increasing orbital volume was noticeable within 2 days and was confirmed by ultrasonography and magnetic resonance imaging. The final result can be anticipated by the volume augmentation effect produced by the amount of saline solution injected in the orbital apex region. All patients were fitted with an artificial eye, which was subsequently enlarged every 3–5 months. Anophthalmic enophthalmos was fully compensated with this technique. No complications have been encountered to date. CONCLUSIONS: Orbital volume augmentation with injectable self inflating hydrogel expander pellets is apparently a safe, quick, and minimally invasive technique for various indications in orbital reconstructive surgery—for example, to treat an enophthalmic appearance in microphthalmos and congenital or acquired anophthalmos

    Orbital Decompression in Thyroid Eye Disease

    Get PDF
    • 

    corecore