731 research outputs found
Wavefunction considerations for the central spin decoherence problem in a nuclear spin bath
Decoherence of a localized electron spin in a solid state material (the
``central spin'' problem) at low temperature is believed to be dominated by
interactions with nuclear spins in the lattice. This decoherence is partially
suppressed through the application of a large magnetic field that splits the
energy levels of the electron spin and prevents depolarization. However,
dephasing decoherence resulting from a dynamical nuclear spin bath cannot be
removed in this way. Fluctuations of the nuclear field lead to uncertainty of
the electron's precessional frequency in a process known as spectral diffusion.
This article considers the effect of the electron's wavefunction shape upon
spectral diffusion and provides wavefunction dependent decoherence time
formulas for free induction decay as well as spin echoes and concatenated
dynamical decoupling schemes for enhancing coherence. We also discuss dephasing
of a qubit encoded in singlet-triplet states of a double quantum dot. A central
theoretical result of this work is the development of a continuum approximation
for the spectral diffusion problem which we have applied to GaAs and InAs
materials specifically
Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid-state environment
We consider the decoherence of a single localized electron spin due to its
coupling to the lattice nuclear spin bath in a semiconductor quantum computer
architecture. In the presence of an external magnetic field and at low
temperatures, the dominant decoherence mechanism is the spectral diffusion of
the electron spin resonance frequency due to the temporally fluctuating random
magnetic field associated with the dipolar interaction induced flip-flops of
nuclear spin pairs. The electron spin dephasing due to this random magnetic
field depends intricately on the quantum dynamics of the nuclear spin bath,
making the coupled decoherence problem difficult to solve. We provide a
formally exact solution of this non-Markovian quantum decoherence problem which
numerically calculates accurate spin decoherence at short times, which is of
particular relevance in solid-state spin quantum computer architectures. A
quantum cluster expansion method is developed, motivated, and tested for the
problem of localized electron spin decoherence due to dipolar fluctuations of
lattice nuclear spins. The method is presented with enough generality for
possible application to other types of spin decoherence problems. We present
numerical results which are in quantitative agreement with electron spin echo
measurements in phosphorus doped silicon. We also present spin echo decay
results for quantum dots in GaAs which differ qualitatively from that of the
phosphorus doped silicon system. Our theoretical results provide the ultimate
limit on the spin coherence (at least, as characterized by Hahn spin echo
measurements) of localized electrons in semiconductors in the low temperature
and the moderate to high magnetic field regime of interest in scalable
semiconductor quantum computer architectures.Comment: 23 pages, 15 figure
Decoherence in qubits due to low-frequency noise
The efficiency of the future devices for quantum information processing is
limited mostly by the finite decoherence rates of the qubits. Recently a
substantial progress was achieved in enhancing the time, which a solid-state
qubit demonstrates a coherent dynamics. This progress is based mostly on a
successful isolation of the qubits from external decoherence sources. Under
these conditions the material-inherent sources of noise start to play a crucial
role. In most cases the noise that quantum device demonstrate has 1/f spectrum.
This suggests that the environment that destroys the phase coherence of the
qubit can be thought of as a system of two-state fluctuators, which experience
random hops between their states. In this short review we discuss the current
state of the theory of the decoherence due to the qubit interaction with the
fluctuators. We describe the effect of such an environment on different
protocols of the qubit manipulations - free induction and echo signal. It turns
out that in many important cases the noise produced by the fluctuators is
non-Gaussian. Consequently the results of the interaction of the qubit with the
fluctuators are not determined by the pair correlation function only.
We describe the effect of the fluctuators using so-called spin-fluctuator
model. Being quite realistic this model allows one to evaluate the qubit
dynamics in the presence of one fluctuator exactly. This solution is found, and
its features, including non-Gaussian effects are analyzed in details. We extend
this consideration for the systems of large number of fluctuators, which
interact with the qubit and lead to the 1/f noise. We discuss existing
experiments on the Josephson qubit manipulation and try to identify
non-Gaussian behavior.Comment: 25 pages, 7 figure
Low-frequency noise as a source of dephasing of a qubit
With the growing efforts in isolating solid-state qubits from external
decoherence sources, the material-inherent sources of noise start to play
crucial role. One representative example is electron traps in the device
material or substrate. Electrons can tunnel or hop between a charged and an
empty trap, or between a trap and a gate electrode. A single trap typically
produces telegraph noise and can hence be modeled as a bistable fluctuator.
Since the distribution of hopping rates is exponentially broad, many traps
produce flicker-noise with spectrum close to 1/f. Here we develop a theory of
decoherence of a qubit in the environment consisting of two-state fluctuators,
which experience transitions between their states induced by interaction with
thermal bath. Due to interaction with the qubit the fluctuators produce
1/f-noise in the qubit's eigenfrequency. We calculate the results of qubit
manipulations - free induction and echo signals - in such environment. The main
problem is that in many important cases the relevant random process is both
non-Markovian and non-Gaussian. Consequently the results in general cannot be
represented by pair correlation function of the qubit eigenfrequency
fluctuations. Our calculations are based on analysis of the density matrix of
the qubit using methods developed for stochastic differential equations. The
proper generating functional is then averaged over different fluctuators using
the so-called Holtsmark procedure. The analytical results are compared with
simulations allowing checking accuracy of the averaging procedure and
evaluating mesoscopic fluctuations. The results allow understanding some
observed features of the echo decay in Josephson qubits.Comment: 18 pages, 8 figures, Proc. of NATO/Euresco Conf. "Fundamental
Problems of Mesoscopic Physics: Interactions and Decoherence", Granada,
Spain, Sept.200
Introduction: looking beyond the walls
In its consideration of the remarkable extent and variety of non-university researchers, this book takes a broader view of ‘knowledge’ and ‘research’ than in the many hot debates about today’s knowledge society, ‘learning age’, or organisation of research. It goes beyond the commonly held image of ‘knowledge’ as something produced and owned by the full-time experts to take a look at those engaged in active knowledge building outside the university walls
The MY NASA DATA Project
On the one hand, locating the right dataset, then figuring out how to use it, is a daunting task that is familiar to almost any scientist or graduate student in the fields of Earth system science. On the other hand, the ability to explore authentic Earth system science data, through inquiry-based education, is an important goal in US national education standards. Fortunately, in the digital age, tools are emerging that can make such data exploration commonplace at all educational levels. This paper describes the conception and development of one project that aims to bridge this gap: Mentoring and inquiry using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA; mynasadata.larc.nasa.gov). With funding from NASA's Science Mission Directorate, this project was launched in early 2004 with the aim of developing microsets and identifying other enablers for making data accessible. A key feature of the project is a Live Access Server, the first educational implementation of this open source software, developed by NOAA, that makes it possible to explore multiple data formats through a single interface. This powerful tool is made more useful to the primary target audiences (K-12 and amateur scientists) through careful selection of the data offered, user-friendly explanations of the tool itself, and age-appropriate explanations of the parameters. However experience already shows that graduate students and even practicing scientists can also make use of this resource. The website also hosts teacher-contributed lesson plans, and seeks to feature reports of research projects that use the data
The solar eclipse and associated atmospheric variations observed in South Korea on 22 July 2009
A partial solar eclipse occurred in South Korea on 22 July 2009. It started at 09:30 a.m. and lasted until 12:14 LST with coverage of between 76.8% and 93.1% of the sun. The observed atmospheric effects of the eclipse are presented. It was found that from the onset of the eclipse, solar radiation was reduced by as much as 88.1 ∼ 89.9% at the present research centre. Also, during the eclipse, air temperature decreased slightly or remained almost unchanged. After the eclipse, however, it rose by 2.5 to 4.5°C at observed stations. Meanwhile, relative humidity increased and wind speeds were lowered by the eclipse. Ground-level ozone was observed to decrease during the event
- …