108 research outputs found

    Noncommutative symmetric functions and Laplace operators for classical Lie algebras

    Get PDF
    New systems of Laplace (Casimir) operators for the orthogonal and symplectic Lie algebras are constructed. The operators are expressed in terms of paths in graphs related to matrices formed by the generators of these Lie algebras with the use of some properties of the noncommutative symmetric functions associated with a matrix. The decomposition of the Sklyanin determinant into a product of quasi-determinants play the main role in the construction. Analogous decomposition for the quantum determinant provides an alternative proof of the known construction for the Lie algebra gl(N).Comment: 25 page

    Schreier rewriting beyond the classical setting

    Full text link
    Using actions of free monoids and free associative algebras, we establish some Schreier-type formulas involving the ranks of actions and the ranks of subactions in free actions or Grassmann-type relations for the ranks of intersections of subactions of free actions. The coset action of the free group is used to establish the generalization of the Schreier formula to the case of subgroups of infinite index. We also study and apply large modules over free associative algebras in the spirit of the paper Olshanskii, A. Yu.; Osin, D.V., Large groups and their periodic quotients, Proc. Amer. Math. Soc., 136 (2008), 753 - 759.Comment: 17 page

    Finitely presented wreath products and double coset decompositions

    Get PDF
    We characterize which permutational wreath products W^(X)\rtimes G are finitely presented. This occurs if and only if G and W are finitely presented, G acts on X with finitely generated stabilizers, and with finitely many orbits on the cartesian square X^2. On the one hand, this extends a result of G. Baumslag about standard wreath products; on the other hand, this provides nontrivial examples of finitely presented groups. For instance, we obtain two quasi-isometric finitely presented groups, one of which is torsion-free and the other has an infinite torsion subgroup. Motivated by the characterization above, we discuss the following question: which finitely generated groups can have a finitely generated subgroup with finitely many double cosets? The discussion involves properties related to the structure of maximal subgroups, and to the profinite topology.Comment: 21 pages; no figure. To appear in Geom. Dedicat

    Peripheral fillings of relatively hyperbolic groups

    Full text link
    A group theoretic version of Dehn surgery is studied. Starting with an arbitrary relatively hyperbolic group GG we define a peripheral filling procedure, which produces quotients of GG by imitating the effect of the Dehn filling of a complete finite volume hyperbolic 3--manifold MM on the fundamental group π1(M)\pi_1(M). The main result of the paper is an algebraic counterpart of Thurston's hyperbolic Dehn surgery theorem. We also show that peripheral subgroups of GG 'almost' have the Congruence Extension Property and the group GG is approximated (in an algebraic sense) by its quotients obtained by peripheral fillings. Various applications of these results are discussed.Comment: The difference with the previous version is that Proposition 3.2 is proved for quasi--geodesics instead of geodesics. This allows to simplify the exposition in the last section. To appear in Invent. Mat
    • …
    corecore