386 research outputs found
The meteorology of Mars and Venus Final report
Meteorology of Mars and Venu
Fretting wear of Ti(CxNy) PVD coatings under variable environmental conditions
Fretting wear as a specific type of degradation is defined as an oscillatory motion at small amplitude between two nominally stationary solid bodies in mutual contact. Under external stresses the interface is being damaged by debris generation and its successive ejections outside the contact area. A potential protection against fretting damage by means of hard coatings is being offered by different surface engineering techniques. For this study TiC, TiN and TiCN hard coatings manufactured by a PVD method have been selected and tested against smooth polycrystalline alumina ball. A fretting test programme has been carried out at the frequency of 5Hz, 100N normal load, 100µm displacement amplitude and at three values of a relative humidity: 10, 50 and 90% at 295-298K temperature. It turned out that the intensity of wear process was depending not only on loading conditions but on environmental ones as well. A significant impact of RH on wear rate and friction behaviour of the coatings under investigation has been observed. Two different damage mechanisms have been identified and related to the phenomena of debris oxidation and debris adhesion to the counterbody surface. In the latter case the debris deposited onto the surface of the alumina ball lead to a change of stress distribution at the interface and as a result to accelerated wear. In this work experiments with variable relative humidity increasing from 10% to 90% within 1 a single fretting test have been completed. It follows from these experiments that there exists an intermediate value of the RH at which the friction coefficient changes rapidly. Finally a dissipated energy approach has been applied in the work in order to quantify and compare fretting wear rates of different hard coatings
Stationary Regime of Random Resistor Networks Under Biased Percolation
The state of a 2-D random resistor network, resulting from the simultaneous
evolutions of two competing biased percolations, is studied in a wide range of
bias values. Monte Carlo simulations show that when the external current is
below the threshold value for electrical breakdown, the network reaches a
steady state with a nonlinear current-voltage characteristic. The properties of
this nonlinear regime are investigated as a function of different model
parameters. A scaling relation is found between and , where
is the average resistance, the linear regime resistance and
the threshold value for the onset of nonlinearity. The scaling exponent is
found to be independent of the model parameters. A similar scaling behavior is
also found for the relative variance of resistance fluctuations. These results
compare well with resistance measurements in composite materials performed in
the Joule regime up to breakdown.Comment: 9 pages, revtex, proceedings of the Merida Satellite Conference
STATPHYS2
Superconducting properties of ultrathin Bi2Sr2CaCu2O8+x single crystals
We use Ar-ion milling to thin Bi2212 single crystals down to a few nanometers
or one-to-two (CuO2)2 layers. With decreasing the thickness, superconducting
transition temperature gradually decreases to zero and the in-plane resistivity
increases to large values indicating the existence of a
superconductor-insulator transition in ultrathin Bi2212 single crystals.Comment: 17 pages, 6 figures, to appear in J. Appl. Phys. 98(3) 200
Gate Coupling to Nanoscale Electronics
The realization of single-molecule electronic devices, in which a
nanometer-scale molecule is connected to macroscopic leads, requires the
reproducible production of highly ordered nanoscale gaps in which a molecule of
interest is electrostatically coupled to nearby gate electrodes. Understanding
how the molecule-gate coupling depends on key parameters is crucial for the
development of high-performance devices. Here we directly address this,
presenting two- and three-dimensional finite-element electrostatic simulations
of the electrode geometries formed using emerging fabrication techniques. We
quantify the gate coupling intrinsic to these devices, exploring the roles of
parameters believed to be relevant to such devices. These include the thickness
and nature of the dielectric used, and the gate screening due to different
device geometries. On the single-molecule (~1nm) scale, we find that device
geometry plays a greater role in the gate coupling than the dielectric constant
or the thickness of the insulator. Compared to the typical uniform nanogap
electrode geometry envisioned, we find that non-uniform tapered electrodes
yield a significant three orders of magnitude improvement in gate coupling. We
also find that in the tapered geometry the polarizability of a molecular
channel works to enhance the gate coupling
Controlling surface statistical properties using bias voltage: Atomic force microscopy and stochastic analysis
The effect of bias voltages on the statistical properties of rough surfaces
has been studied using atomic force microscopy technique and its stochastic
analysis. We have characterized the complexity of the height fluctuation of a
rough surface by the stochastic parameters such as roughness exponent, level
crossing, and drift and diffusion coefficients as a function of the applied
bias voltage. It is shown that these statistical as well as microstructural
parameters can also explain the macroscopic property of a surface. Furthermore,
the tip convolution effect on the stochastic parameters has been examined.Comment: 8 pages, 11 figures
SiC/Al4SiC4-Based Heterostructure Transistors
A wide-band-gap (WBG) SiC/Al4SiC4 heterostructure transistor with a gate length of 5 μm is designed using a ternary carbide of Al4SiC4, and its performance is simulated by Silvaco Atlas. The simulations use a mixture of parameters obtained from ensemble Monte Carlo simulations, DFT calculations, and experimental data. The 5 μm gate length transistor is then laterally scaled to 2 and 1 μm gate length devices. The 5 μm gate length SiC/Al4SiC4 heterostructure transistor delivers a maximum drain current of 168 mA/mm, which increases to 244 mA/mm and 350 mA/mm for gate lengths of 2 and 1 μm, respectively. The device breakdown voltage is 59.0 V, which reduces to 31.0 V and to 18.0 V in the scaled 2 μm and the 1 μm gate length transistors, respectively. The scaled down 1 μm gate length device switches faster thanks to a higher transconductance of 65.1 mS/mm compared to only 1.69 mS/mm for the 5 μm gate length device. Finally, the subthreshold slope of the scaled devices is 197.3, 97.6, and 96.1 mV/dec for gate lengths of 5, 2, and 1 μm, respectively
Numerical Simulation of Grain Boundary Grooving By Level Set Method
A numerical investigation of grain-boundary grooving by means of a Level Set
method is carried out. An idealized polygranular interconnect which consists of
grains separated by parallel grain boundaries aligned normal to the average
orientation of the surface is considered. The surface diffusion is the only
physical mechanism assumed. The surface diffusion is driven by surface
curvature gradients, and a fixed surface slope and zero atomic flux are assumed
at the groove root. The corresponding mathematical system is an initial
boundary value problem for a two-dimensional Hamilton-Jacobi type equation. The
results obtained are in good agreement with both Mullins' analytical "small
slope" solution of the linearized problem (W.W. Mullins, 1957) (for the case of
an isolated grain boundary) and with solution for the periodic array of grain
boundaries (S.A. Hackney, 1988).Comment: Submitted to the Journal of Computational Physics (19 pages, 8
Postscript figures, 3 tables, 29 references
Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy
We report nano-scale mechanical heterogeneity of a metallic glass
characterized by dynamic atomic force microscopy. Apparent energy dissipation
with the variation of ~12%, originating from non-uniform distribution of local
viscoelasticity, was characterized. The correlation length of heterogeneous
viscoelasticity was measured to be ~2.5{\pm}0.3 nm, which is well consistent
with the dimension of shear transformation zones for plastic flow. This study
provides the first experimental observation on the nano-scale mechanical
heterogeneity in a metallic glass, and may fill the gap between atomic models
and the macroscopic properties of metallic glasses
- …