187 research outputs found

    Numerical Benchmark for High-Reynolds-Number Supercritical Flows with Large Density Gradients

    Get PDF
    Because of the extreme complexity of physical phenomena at high pressure, only limited data are available for solver validation at device-relevant conditions such as liquid rocket engines, gas turbines, or diesel engines. In the present study, a two-dimensional direct numerical simulation is used to establish a benchmark for supercritical flow at a high Reynolds number and high-density ratio at conditions typically encountered in liquid rocket engines. Emphasis has been placed on maintaining the flow characteristics of actual systems with simple boundary conditions, grid spacing, and geometry. Results from two different state-of-the-art codes, with markedly different numerical formalisms, are compared using this benchmark. The strong similarity between the two numerical predictions lends confidence to the physical accuracy of the results. The established database can be used for solver benchmarking and model development at conditions relevant to many propulsion and power systems

    Prostate radiation in non-metastatic castrate refractory prostate cancer provides an interesting insight into biology of prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The natural history of non-metastatic castrate refractory prostate cancer is unknown and treatment options are limited. We present a retrospective review of 13 patients with locally advanced or high risk prostate cancer, initially treated with hormone monotherapy and then treated with prostate radiation after becoming castration refractory.</p> <p>Findings</p> <p>Median PSA response following prostate radiation was 67.4%. Median time to biochemical progression following radiotherapy was 15 months and to detection of metastatic disease was 18.5 months. Median survival from castration resistance (to date of death or November 2011) was 60 months, with median survival from RT 42 months.</p> <p>Conclusion</p> <p>Prostate radiation appears to be beneficial even in patients with potential micrometastatic disease, which supports the hypothesis that the primary tumour is important in the progression of prostate cancer. These results are an interesting addition to the literature on the biology of prostate cancer especially as this data is unlikely to be available in the future due to combined prostate radiation and androgen deprivation therapy now being the standard of care.</p

    Eulerian CFD modeling of nozzle geometry effects on ECN Sprays A and D: assessment and analysis

    Full text link
    This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087419882500.[EN] Diesel spray modeling is a multi-scale problem with complex interactions between different flow regions, that is, internal nozzle flow, near-nozzle region and developed spray, including evaporation and combustion. There are several modeling approaches that have proven particularly useful for some spray regions although they have struggled at other areas, while Eulerian modeling has shown promise in dealing with all characteristics at a reasonable computational effort for engineering calculations. In this work, the sigma -Y single-fluid diffuse-interface model, based on scale separation assumptions at high Reynolds and Weber numbers, is used to simulate the engine combustion network Sprays A and D within a Reynolds-averaged Navier-Stokes turbulence modeling approach. The study is divided into two parts. First of all, the larger diameter Spray D is modeled from the nozzle flow till evaporative spray conditions, obtaining successful prediction of numerous spray metrics, paying special attention to the near-nozzle region where spray dispersion and interfacial surface area can be validated against measurements conducted at the Advanced Photon Source at Argonne National Laboratory, including both the ultra-small-angle X-ray scattering and the X-ray radiography. Afterwards, an analysis of the modeling predictions is made in comparison with previous results obtained for Spray A, considering the nozzle geometry effects in the modeling behavior.The authors thank the freely shared X-ray radiography and ultra-small-angle X-ray scattering measurements performed at Argonne National Laboratory by the following authors: Daniel J. Duke, Jan Ilavsky, Katarzyna E. Matusik., Brandon A. Sforzo., Alan L. Kastengren and Christopher F. Powell. They also thankfully acknowledge the computer resources at Picasso and the technical support provided by Universidad de Malaga (UMA; RES-FI-2018-1-0039).Pandal, A.; García-Oliver, JM.; Pastor Enguídanos, JM. (2020). Eulerian CFD modeling of nozzle geometry effects on ECN Sprays A and D: assessment and analysis. International Journal of Engine Research. 21(1):73-88. https://doi.org/10.1177/1468087419882500S7388211PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009Payri, R., Salvador, F. J., Gimeno, J., & Zapata, L. D. (2008). Diesel nozzle geometry influence on spray liquid-phase fuel penetration in evaporative conditions. Fuel, 87(7), 1165-1176. doi:10.1016/j.fuel.2007.05.058Payri, R., Salvador, F. J., Gimeno, J., & de la Morena, J. (2009). Effects of nozzle geometry on direct injection diesel engine combustion process. Applied Thermal Engineering, 29(10), 2051-2060. doi:10.1016/j.applthermaleng.2008.10.009Payri, F., Payri, R., Salvador, F. J., & Martínez-López, J. (2012). A contribution to the understanding of cavitation effects in Diesel injector nozzles through a combined experimental and computational investigation. Computers & Fluids, 58, 88-101. doi:10.1016/j.compfluid.2012.01.005Kastengren, A. L., Powell, C. F., Wang, Y., Im, K.-S., & Wang, J. (2009). X-RAY RADIOGRAPHY MEASUREMENTS OF DIESEL SPRAY STRUCTURE AT ENGINE-LIKE AMBIENT DENSITY. Atomization and Sprays, 19(11), 1031-1044. doi:10.1615/atomizspr.v19.i11.30Pickett, L. M., Manin, J., Kastengren, A., & Powell, C. (2014). Comparison of Near-Field Structure and Growth of a Diesel Spray Using Light-Based Optical Microscopy and X-Ray Radiography. SAE International Journal of Engines, 7(2), 1044-1053. doi:10.4271/2014-01-1412Dahms, R. N., Manin, J., Pickett, L. M., & Oefelein, J. C. (2013). Understanding high-pressure gas-liquid interface phenomena in Diesel engines. Proceedings of the Combustion Institute, 34(1), 1667-1675. doi:10.1016/j.proci.2012.06.169Arienti, M., & Sussman, M. (2017). A numerical study of the thermal transient in high-pressure diesel injection. International Journal of Multiphase Flow, 88, 205-221. doi:10.1016/j.ijmultiphaseflow.2016.09.017Vallet, A., Burluka, A. A., & Borghi, R. (2001). DEVELOPMENT OF A EULERIAN MODEL FOR THE «ATOMIZATION» OF A LIQUID JET. Atomization and Sprays, 11(6), 24. doi:10.1615/atomizspr.v11.i6.20Siebers, D. L. (2008). Recent Developments on Diesel Fuel Jets Under Quiescent Conditions. Flow and Combustion in Reciprocating Engines, 257-308. doi:10.1007/978-3-540-68901-0_5Oefelein, J., Dahms, R., & Lacaze, G. (2012). Detailed Modeling and Simulation of High-Pressure Fuel Injection Processes in Diesel Engines. SAE International Journal of Engines, 5(3), 1410-1419. doi:10.4271/2012-01-1258Demoulin, F.-X., Reveillon, J., Duret, B., Bouali, Z., Desjonqueres, P., & Menard, T. (2013). TOWARD USING DIRECT NUMERICAL SIMULATION TO IMPROVE PRIMARY BREAK-UP MODELING. Atomization and Sprays, 23(11), 957-980. doi:10.1615/atomizspr.2013007439Desantes, J. M., Garcia-Oliver, J. M., Pastor, J. M., & Pandal, A. (2016). A COMPARISON OF DIESEL SPRAYS CFD MODELING APPROACHES: DDM VERSUS E-Y EULERIAN ATOMIZATION MODEL. Atomization and Sprays, 26(7), 713-737. doi:10.1615/atomizspr.2015013285Desantes, J. M., García-Oliver, J. M., Pastor, J. M., Pandal, A., Baldwin, E., & Schmidt, D. P. (2016). Coupled/decoupled spray simulation comparison of the ECN spray a condition with the -Y Eulerian atomization model. International Journal of Multiphase Flow, 80, 89-99. doi:10.1016/j.ijmultiphaseflow.2015.12.002Garcia-Oliver, J. M., Pastor, J. M., Pandal, A., Trask, N., Baldwin, E., & Schmidt, D. P. (2013). DIESEL SPRAY CFD SIMULATIONS BASED ON THE Σ-Υ EULERIAN ATOMIZATION MODEL. Atomization and Sprays, 23(1), 71-95. doi:10.1615/atomizspr.2013007198Navarro-Martinez, S. (2014). Large eddy simulation of spray atomization with a probability density function method. International Journal of Multiphase Flow, 63, 11-22. doi:10.1016/j.ijmultiphaseflow.2014.02.013Pandal, A., Pastor, J. M., García-Oliver, J. M., Baldwin, E., & Schmidt, D. P. (2016). A consistent, scalable model for Eulerian spray modeling. International Journal of Multiphase Flow, 83, 162-171. doi:10.1016/j.ijmultiphaseflow.2016.04.003Pandal, A., Payri, R., García-Oliver, J. M., & Pastor, J. M. (2017). Optimization of spray break-up CFD simulations by combining Σ-Y Eulerian atomization model with a response surface methodology under diesel engine-like conditions (ECN Spray A). Computers & Fluids, 156, 9-20. doi:10.1016/j.compfluid.2017.06.022Pandal, A., García-Oliver, J. M., Novella, R., & Pastor, J. M. (2018). A computational analysis of local flow for reacting Diesel sprays by means of an Eulerian CFD model. International Journal of Multiphase Flow, 99, 257-272. doi:10.1016/j.ijmultiphaseflow.2017.10.010Payri, R., Ruiz, S., Gimeno, J., & Martí-Aldaraví, P. (2015). Verification of a new CFD compressible segregated and multi-phase solver with different flux updates-equations sequences. Applied Mathematical Modelling, 39(2), 851-861. doi:10.1016/j.apm.2014.07.011Salvador, F. J., Gimeno, J., Pastor, J. M., & Martí-Aldaraví, P. (2014). Effect of turbulence model and inlet boundary condition on the Diesel spray behavior simulated by an Eulerian Spray Atomization (ESA) model. International Journal of Multiphase Flow, 65, 108-116. doi:10.1016/j.ijmultiphaseflow.2014.06.003Demoulin, F.-X., Beau, P.-A., Blokkeel, G., Mura, A., & Borghi, R. (2007). A NEW MODEL FOR TURBULENT FLOWS WITH LARGE DENSITY FLUCTUATIONS: APPLICATION TO LIQUID ATOMIZATION. Atomization and Sprays, 17(4), 315-345. doi:10.1615/atomizspr.v17.i4.20Pandal, A., Pastor, J. M., Payri, R., Kastengren, A., Duke, D., Matusik, K., … Schmidt, D. (2017). Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation. SAE International Journal of Fuels and Lubricants, 10(2), 423-431. doi:10.4271/2017-01-0859Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 620. doi:10.1063/1.168744Faeth, G. M. (1983). Evaporation and combustion of sprays. Progress in Energy and Combustion Science, 9(1-2), 1-76. doi:10.1016/0360-1285(83)90005-9Pitzer, K. S., Lippmann, D. Z., Curl, R. F., Huggins, C. M., & Petersen, D. E. (1955). The Volumetric and Thermodynamic Properties of Fluids. II. Compressibility Factor, Vapor Pressure and Entropy of Vaporization1. Journal of the American Chemical Society, 77(13), 3433-3440. doi:10.1021/ja01618a002Lebas, R., Menard, T., Beau, P. A., Berlemont, A., & Demoulin, F. X. (2009). Numerical simulation of primary break-up and atomization: DNS and modelling study. International Journal of Multiphase Flow, 35(3), 247-260. doi:10.1016/j.ijmultiphaseflow.2008.11.005Duret, B., Reveillon, J., Menard, T., & Demoulin, F. X. (2013). Improving primary atomization modeling through DNS of two-phase flows. International Journal of Multiphase Flow, 55, 130-137. doi:10.1016/j.ijmultiphaseflow.2013.05.004Gimeno, J., Bracho, G., Martí-Aldaraví, P., & Peraza, J. E. (2016). Experimental study of the injection conditions influence over n-dodecane and diesel sprays with two ECN single-hole nozzles. Part I: Inert atmosphere. Energy Conversion and Management, 126, 1146-1156. doi:10.1016/j.enconman.2016.07.077Kastengren, A., Ilavsky, J., Viera, J. P., Payri, R., Duke, D. J., Swantek, A., … Powell, C. F. (2017). Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering. International Journal of Multiphase Flow, 92, 131-139. doi:10.1016/j.ijmultiphaseflow.2017.03.005Kastengren, A. L., Tilocco, F. Z., Powell, C. F., Manin, J., Pickett, L. M., Payri, R., & Bazyn, T. (2012). ENGINE COMBUSTION NETWORK (ECN): MEASUREMENTS OF NOZZLE GEOMETRY AND HYDRAULIC BEHAVIOR. Atomization and Sprays, 22(12), 1011-1052. doi:10.1615/atomizspr.2013006309Matusik, K. E., Duke, D. J., Kastengren, A. L., Sovis, N., Swantek, A. B., & Powell, C. F. (2017). High-resolution X-ray tomography of Engine Combustion Network diesel injectors. International Journal of Engine Research, 19(9), 963-976. doi:10.1177/1468087417736985Payri, R., Gimeno, J., Cuisano, J., & Arco, J. (2016). Hydraulic characterization of diesel engine single-hole injectors. Fuel, 180, 357-366. doi:10.1016/j.fuel.2016.03.083Naber, J., & Siebers, D. L. (1996). Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays. SAE Technical Paper Series. doi:10.4271/960034Pope, S. B. (1978). An explanation of the turbulent round-jet/plane-jet anomaly. AIAA Journal, 16(3), 279-281. doi:10.2514/3.7521Battistoni, M., Magnotti, G. M., Genzale, C. L., Arienti, M., Matusik, K. E., Duke, D. J., … Marti-Aldaravi, P. (2018). Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D. SAE International Journal of Fuels and Lubricants, 11(4), 337-352. doi:10.4271/2018-01-0277Chesnel, J., Reveillon, J., Menard, T., & Demoulin, F.-X. (2011). LARGE EDDY SIMULATION OF LIQUID JET ATOMIZATION. Atomization and Sprays, 21(9), 711-736. doi:10.1615/atomizspr.2012003740Devassy, B. M., Habchi, C., & Daniel, E. (2015). ATOMIZATION MODELLING OF LIQUID JETS USING A TWO-SURFACE-DENSITY APPROACH. Atomization and Sprays, 25(1), 47-80. doi:10.1615/atomizspr.2014011350García-Oliver, J. M., Malbec, L.-M., Toda, H. B., & Bruneaux, G. (2017). A study on the interaction between local flow and flame structure for mixing-controlled Diesel sprays. Combustion and Flame, 179, 157-171. doi:10.1016/j.combustflame.2017.01.023Han, D., & Mungal, M. . (2001). Direct measurement of entrainment in reacting/nonreacting turbulent jets. Combustion and Flame, 124(3), 370-386. doi:10.1016/s0010-2180(00)00211-xHill, B. J. (1972). Measurement of local entrainment rate in the initial region of axisymmetric turbulent air jets. Journal of Fluid Mechanics, 51(4), 773-779. doi:10.1017/s0022112072001351Post, S., Iyer, V., & Abraham, J. (1999). A Study of Near-Field Entrainment in Gas Jets and Sprays Under Diesel Conditions. Journal of Fluids Engineering, 122(2), 385-395. doi:10.1115/1.48326

    Predictive factors for skeletal complications in hormone-refractory prostate cancer patients with metastatic bone disease

    Get PDF
    Factors predictive of skeletal-related events (SREs) in bone metastatic prostate cancer patients with hormone-refractory disease were investigated. We evaluated the frequency of SREs in 200 hormone-refractory patients consecutively observed at our Institution and followed until death or the last follow-up. Baseline parameters were evaluated in univariate and multivariate analysis as potential predictive factors of SREs. Skeletal-related events were observed in 86 patients (43.0%), 10 of which (5.0%) occurred before the onset of hormone-refractory disease. In univariate analysis, patient performance status (P=0.002), disease extent (DE) in bone (P=0.0001), bone pain (P=0.0001), serum alkaline phosphatase (P=0.0001) and urinary N-telopeptide of type one collagen (P=0.0001) directly correlated with a greater risk to develop SREs, whereas Gleason score at diagnosis, serum PSA, Hb, serum albumin, serum calcium, types of bone lesions and duration of androgen deprivation therapy did not. Both DE in bone (hazard ratio (HR): 1.16, 95% confidence interval (CI): 1.07–1.25, P=0.000) and pain score (HR: 1.13, 95% CI: 1.06–1.20, P=0.000) were independent variables predicting for the onset of SREs in multivariate analysis. In patients with heavy tumour load in bone and great bone pain, the percentage of SREs was almost twice as high as (26 vs 52%, P<0.02) and occurred significantly earlier (P=0.000) than SREs in patients with limited DE in bone and low pain. Bone pain and DE in bone independently predict the occurrence of SREs in bone metastatic prostate cancer patients with hormone-refractory disease. These findings could help physicians in tailoring the skeletal follow-up most appropriate to individual patients and may prove useful for stratifying patients enrolled in bisphosphonate clinical trials

    The effects of transurethral resection and cystoprostatectomy on dissemination of epithelial cells in the circulation of patients with bladder cancer

    Get PDF
    This study was undertaken to evaluate the risk of haematogenous dissemination of epithelial cells induced by endoscopic resection and/or cystoprostatectomy for transitional cell carcinoma of the bladder. Thirty-three patients were studied. Thirty-one had different stages and grades of bladder cancer and two patients had benign bladder conditions. Twenty-five cancer patients required transurethral resection of their bladder tumour. Of those, 20 had superficial disease (pTaG1–G2: n = 19; pT1G2: n = 1) and five had muscle invasive tumours (pT2G3: n = 2; pT3aG3: n = 1; pT4G3: n = 2). Five patients underwent radical cystoprostatectomy for muscle invasive cancers (pT2G3: n = 3; pT3bG3: n = 1; pT4G3: n = 1) and one man received chemotherapy for metastatic disease. Venous blood (10 ml) was obtained from the antecubital fossa in each patient, before and 1–2 h after completion of surgery, and prior to treatment in the metastatic patient. An indirect immunocytochemical technique was used to detect circulating epithelial cells after centrifugation on Ficoll gradient and fixation of mononuclear cells on slides, using a monoclonal antibody directed against three cytokeratins: CK8, CK18 and CK19. Circulating epithelial cells were detected only in the patient with metastatic disease. None of the other patients had evidence of epithelial circulating cells before or after surgery. The results suggest that irrespective of disease stage and grade, neither endoscopic nor open bladder surgery leads to detectable dissemination of urothelial cells in the peripheral circulation. These procedures are therefore unlikely to increase the risk of progression and metastasis in transitional cell carcinoma of the bladder. © 1999 Cancer Research Campaig

    A systematic review and meta-analysis of bone metabolism in prostate adenocarcinoma

    Get PDF
    <p/> <p>Background</p> <p>Osteoporosis could be associated with the hormone therapy for metastatic prostate carcinoma (PCa) and with PCa <it>per se</it>. The objective of this review is to determine the incidence of bone loss and osteoporosis in patients with PCa who are or are not treated with hormone therapy (ADT).</p> <p>Methods</p> <p>The Medline, Embase, Cancerlit, and American Society of Clinical Oncology Abstract databases were searched for published studies on prostate cancer and bone metabolism. The outcomes assessed were: fracture, osteoporosis and osteopenia.</p> <p>Results</p> <p>Thirty-two articles (116,911 participants) were included in the meta-analysis. PCa patients under ADT had a higher risk of osteoporosis (RR, 1.30; <it>p </it>< 0.00001) and a higher risk of fractures (RR, 1.17; <it>p </it>< 0.00001) as compared to patients not under ADT. The total bone mineral density was lower in patients under ADT when compared with patients not under ADT (<it>p </it>= 0.031) but it was similar to bone mineral density found in healthy controls (<it>p </it>= 0.895). The time of androgen deprivation therapy correlated negatively with lumbar spine and total hip bone mineral density (Spearman's rho = -0.490 and -0.773; <it>p </it>= 0.028 and 0.001, respectively) and with total hip <it>t </it>score (Spearman's rho = -0.900; <it>p </it>= 0.037).</p> <p>Conclusion</p> <p>We found consistent evidence that the use of androgen deprivation therapy in patients with PCa reduces bone mineral density, increasing the risk of fractures in these patients.</p

    Experimental Investigation of Injection-Coupled High-Frequency Combustion Instabilities

    Get PDF
    Self-excited high-frequency combustion instabilities were investigated in a 42-injector cryogenic rocket combustor under representative conditions. In previous research it was found that the instabilities are connected to acoustic resonance of the shear-coaxial injectors. In order to gain a better understanding of the flame dynamics during instabilities, an optical access window was realised in the research combustor. This allowed 2D visualisation of supercritical flame response to acoustics under conditions similar to those found in European launcher engines. Through the window, high-speed imaging of the flame was conducted. Dynamic Mode Decomposition was applied to analyse the flame dynamics at specific frequencies, and was able to isolate the flame response to injector or combustion chamber acoustic modes. The flame response at the eigenfrequencies of the oxygen injectors showed symmetric and longitudinal wave-like structures on the dense oxygen core. With the gained understanding of the BKD coupling mechanism it was possible to derive LOX injector geometry changes in order to reduce the risks of injection-coupled instabilities for future cryogenic rocket engines

    Bone mineral density in Jamaican men on androgen deprivation therapy for prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Androgen deprivation therapy (ADT) has been reported to reduce the bone mineral density (BMD) in men with prostate cancer (CaP). However, Afro-Caribbeans are under-represented in most studies. The aim was to determine the effect of androgen deprivation therapy (ADT) on the bone mineral density (BMD) of men with prostate cancer in Jamaica.</p> <p>Methods</p> <p>The study consisted of 346 Jamaican men, over 40 years of age: 133 ADT treated CaP cases (group 1), 43 hormone-naïve CaP controls (group 2) and 170 hormone naïve controls without CaP (group 3). Exclusion criteria included metastatic disease, bisphosphonate therapy or metabolic disease affecting BMD. BMD was measured with a calcaneal ultrasound and expressed in S.D. units relative to young adult men (T score), according to the World Health Organization definition. Patient weight, height and BMI were assessed.</p> <p>Results</p> <p>Mean ± sd, age of patients in group 1 (75± 7.4 yrs) was significantly greater than groups 2 and 3 (67 ± 8.1 yrs; 65±12.0 yrs). There was no significant difference in weight and BMI between the 3 groups. . The types of ADT (% of cases, median duration in months with IQR) included LHRH (Luteinizing hormone releasing hormone) analogues (28.6%, 17.9, IQR 20.4), oestrogens (9.8%, 60.5, IQR 45.6) anti-androgens (11.3%, 3.3, IQR 15.2) and orchiectomy (15.7%, 43.4, IQR 63.9). Unadjusted t score of group 1, mean ± sd, (-1.6± 1.5) was significantly less than group 2 (-0.9±1.1) and group 3 (-0.7±1.4), p <0.001. Ninety three (69.9%), 20 (45%) and 75 (42%) of patients in groups 1, 2 and 3 respectively were classified as either osteopenic or osteoporotic (p<0.001). Adjusting for age, there was a significant difference in t scores between groups 1 and 2 as well as between groups 1 and 3 (p<0.001). Compared with oestrogen therapy and adjusting for duration of therapy, the odds of low bone mineral density (osteopenia or osteoporosis) with LHRH analogue was 4.5 (95%CI, 14.3 to 3.4); with anti-androgens was 5.9 (95%CI, 32.7 to 5); with orchiectomy was 7.3 (95%CI, 30 to 5.8) and multiple drugs was 9.2 ((95%CI, 31 to 7.1).</p> <p>Conclusions</p> <p>ADT is associated with lower BMD in Jamaican men on hormonal therapy for prostate cancer.</p

    The role of gonadotrophin-releasing hormone antagonists in the treatment of patients with advanced hormone-dependent prostate cancer in the UK.

    Get PDF
    PURPOSE: Comparing gonadotrophin-releasing hormone (GnRH) antagonists and agonists as androgen deprivation therapy for advanced prostate cancer (PC). METHODS: This article stems from a round-table meeting in December 2014 to compare the properties of GnRH agonists and antagonists in the published literature in order to identify the patient groups most likely to benefit from GnRH antagonist therapy. A broad PubMed and congress abstract search was carried out in preparation for the meeting to ensure that the latest data and opinion were available for the discussions. RESULTS: In randomised, controlled trials, GnRH antagonist therapy provides more rapid suppression of luteinising hormone, follicle-stimulating hormone and testosterone than GnRH agonist treatment. Compared with the GnRH agonist, there is evidence of improved disease control by a GnRH antagonist, with longer interval to prostate-specific antigen progression and greater reduction of serum alkaline phosphatase. In a post hoc analysis of six randomised trials, the risk of cardiac events within 1 year of initiating therapy was significantly lower among men receiving GnRH antagonist than agonist. Pre-clinical laboratory data suggest a number of mechanisms whereby GnRH antagonist therapy may benefit men with pre-existing cardiovascular disease (CVD), the most plausible hypothesis being that, unlike GnRH agonists, GnRH antagonists do not activate T lymphocytes, which act to increase atherosclerotic plaque rupture. CONCLUSION: When making treatment decisions, clinicians should consider comorbidities, particularly CVD, in addition to effects on PC. GnRH antagonists may be appropriate in patients with significant CV risk, existing osteopenia, lower urinary tract symptoms and significant metastatic disease
    corecore