430 research outputs found
Additional Evidence for the Surface Origin of the Peculiar Angular-Dependent Magnetoresistance Oscillations Discovered in a Topological Insulator Bi_{1-x}Sb_{x}
We present detailed data on the unusual angular-dependent magnetoresistance
oscillation phenomenon recently discovered in a topological insulator
Bi_{0.91}Sb_{0.09}. Direct comparison of the data taken before and after
etching the sample surface gives compelling evidence that this phenomenon is
essentially originating from a surface state. The symmetry of the oscillations
suggests that it probably comes from the (111) plane, and obviously a new
mechanism, such as a coupling between the surface and the bulk states, is
responsible for this intriguing phenomenon in topological insulators.Comment: 5 pages, 4 figures, Proceedings manuscript for the 19th International
Conference on the Application of High Magnetic Fields in Semiconductor
Physics and Nanotechnology (HMF-19
Electronic Control of Spin Alignment in pi-Conjugated Molecular Magnets
Intramolecular spin alignment in pi-conjugated molecules is studied
theoretically in a model of a Peierls-Hubbard chain coupled with two localized
spins. By means of the exact diagonalization technique, we demonstrate that a
spin singlet (S=0) to quartet (S=3/2) transition can be induced by electronic
doping, depending on the chain length, the positions of the localized spins,
and the sign of the electron-spin coupling. The calculated results provides a
theoretical basis for understanding the mechanism of spin alignment recently
observed in a diradical donor molecule.Comment: 4 pages, 4 figures, Physical Review Letters (in press
Temperature and thickness dependence of tunneling anisotropic magnetoresistance in exchange-biased Py/IrMn/MgO/Ta stacks
Weinvestigate the thickness and temperature dependence of a series of Ni0.8Fe0.2/Ir0.2Mn0.8 bilayer samples with varying thickness ratio of the ferromagnet/antiferromagnet (tFM tAFM) in order to explore the exchange coupling strengths in tunneling anisotropic magnetoresistance (TAMR) devices. Specific values of tFM tAFM lead to four distinct scenarios with specific electric responses to moderate magnetic fields. The characteristic dependence of the measured TAMR signal on applied voltage allows us to confirm its persistence up to room temperature despite an overlapped contribution by a thermal magnetic noise
Ultrafast All-Polymer Paper-Based Batteries
Conducting polymers for battery applications have been subject to numerous investigations during the last two decades. However, the functional charging rates and the cycling stabilities have so far been found to be insufficient for practical applications. These shortcomings can, at least partially, be explained by the fact that thick layers of the conducting polymers have been used to obtain sufficient capacities of the batteries. In the present letter, we introduce a novel nanostructured high-surface area electrode material for energy storage applications composed of cellulose fibers of algal origin individually coated with a 50 nm thin layer of polypyrrole. Our results show the hitherto highest reported charge capacities and charging rates for an all polymer paper-based battery. The composite conductive paper material is shown to have a specific surface area of 80 m2 g-1 and batteries based on this material can be charged with currents as high as 600 mA cm-2 with only 6 % loss in capacity over 100 subsequent charge and discharge cycles. The aqueous-based batteries, which are entirely based on cellulose and polypyrrole and exhibit charge capacities between 25 and 33 mAh g-1 or 38-50 mAh g-1 per weight of the active material, open up new possibilities for the production of environmentally friendly, cost efficient, up-scalable and lightweight energy storage systems. There is currently a great interest in the development of thin, flexible, lightweight, and environmentally friendly batteries and supercapacitors.1 In this process, the preparation of novel redox polymer and electronically conducting polymer-base
Efficient Bit-Decomposition and Modulus-Conversion Protocols with an Honest Majority
We propose secret-sharing-based bit-decomposition and modulus conversion protocols for a prime order ring with an honest majority: an adversary can corrupt parties of parties and . Our protocols are secure against passive and active adversaries depending on the components of our protocols. We assume a secret is an -bit element and , where in the passive security and in the active security. The outputs of our bit-decomposition and modulus-conversion protocols are tuple of shares in and a share in , respectively, where is the modulus to be converted. If and are small, the communication complexity of our passively secure bit-decomposition and modulus-conversion protocols are bits and bits, respectively. Our key observation is that a quotient of additive shares can be computed from the \emph{least} significant bits. If a secret is ``shifted\u27\u27 and additively shared by in as , the least significant bits of determines since is an odd prime and the least significant bits of are s
Paintable Battery
If the components of a battery, including electrodes, separator, electrolyte and the current collectors can be designed as paints and applied sequentially to build a complete battery, on any arbitrary surface, it would have significant impact on the design, implementation and integration of energy storage devices. Here, we establish a paradigm change in battery assembly by fabricating rechargeable Li-ion batteries solely by multi-step spray painting of its components on a variety of materials such as metals, glass, glazed ceramics and flexible polymer substrates. We also demonstrate the possibility of interconnected modular spray painted battery units to be coupled to energy conversion devices such as solar cells, with possibilities of building standalone energy capture-storage hybrid devices in different configurations
Synthesis of air‐stable, odorless thiophenol surrogates via Ni‐Catalyzed C−S cross‐coupling
Thiophenols are versatile synthetic intermediates whose practical appeal is marred by their air sensitivity, toxicity and extreme malodor. Herein we report an efficient catalytic method for the preparation of S-aryl isothiouronium salts, and demonstrate that these air-stable, odorless solids serve as user-friendly sources of thiophenols in synthesis. Diverse isothiouronium salts featuring synthetically useful functionality are readily accessible via nickelcatalyzed C-S cross-coupling of (hetero)aryl iodides and thiourea. Convenient, chromatography-free isolation of these salts is achieved via precipitation, allowing the methodology to be translated directly to large scales. Thiophenols are liberated from the corresponding isothiouronium salts upon treatment with a weak base, enabling an in situ release / S-functionalization strategy that entirely negates the need to isolate, purify or manipulate these noxious reagent
Common Variants in the COL4A4 Gene Confer Susceptibility to Lattice Degeneration of the Retina
Lattice degeneration of the retina is a vitreoretinal disorder characterized by a visible fundus lesion predisposing the patient to retinal tears and detachment. The etiology of this degeneration is still uncertain, but it is likely that both genetic and environmental factors play important roles in its development. To identify genetic susceptibility regions for lattice degeneration of the retina, we performed a genome-wide association study (GWAS) using a dense panel of 23,465 microsatellite markers covering the entire human genome. This GWAS in a Japanese cohort (294 patients with lattice degeneration and 294 controls) led to the identification of one microsatellite locus, D2S0276i, in the collagen type IV alpha 4 (COL4A4) gene on chromosome 2q36.3. To validate the significance of this observation, we evaluated the D2S0276i region in the GWAS cohort and in an independent Japanese cohort (280 patients and 314 controls) using D2S0276i and 47 single nucleotide polymorphisms covering the region. The strong associations were observed in D2S0276i and rs7558081 in the COL4A4 gene (Pc = 5.8×10−6, OR = 0.63 and Pc = 1.0×10−5, OR = 0.69 in a total of 574 patients and 608 controls, respectively). Our findings suggest that variants in the COL4A4 gene may contribute to the development of lattice degeneration of the retina
- …