18 research outputs found

    Frequently hypercyclic translation semigroups

    Get PDF
    Frequent hypercyclicity for translation C0C_0-semigroups on weighted spaces of continuous functions is investigated. The results are achieved by establishing an analogy between frequent hypercyclicity for the translation semigroup and for weighted pseudo-shifts and by characterizing frequent hypercyclic weighted pseudo-shifts in spaces of vanishing sequences. Frequent hypercylic translation semigroups in weighted LpL^p-spaces are also characterized

    Maximal regularity in lpl_p spaces for discrete time fractional shifted equations

    Get PDF
    In this paper, we are presenting a new method based on operator-valued Fourier multipliers to \- characterize the existence and uniqueness of ℓp\ell_p-solutions for discrete time fractional models in the form \Delta^{\alpha}u(n,x) = Au(n ,x) + \sum_{j=1}^k \beta_j u(n-\tau_j,x) +f(n,u(n,x)),\,\,\, n \in \mathbb{Z}, x \in \Omega \subset \mathbb{R}^N, \beta_j\in\mathbb{R}\hspace{0.1cm}\mbox{and}\hspace{0.1cm} \tau_j \in \mathbb{Z}, where AA is a closed linear operator defined on a Banach space XX and Δα\Delta^{\alpha} denotes the Gr\"unwald-Letnikov fractional derivative of order α>0.\alpha>0. If XX is a UMDUMD space, we provide this characterization only in terms of the RR-boundedness of the operator-valued symbol associated to the abstract model. To illustrate our results, we derive new qualitative properties of nonlinear difference equations with shiftings, including fractional versions of the logistic and Nagumo equations

    Sharp values for the constants in the polynomial Bohnenblust-Hille inequality

    Get PDF
    In this paper we prove that the complex polynomial Bohnenblust-Hille constant for 22-homogeneous polynomials in C2{\mathbb C}^2 is exactly 324\sqrt[4]{\frac{3}{2}}. We also give the exact value of the real polynomial Bohnenblust-Hille constant for 22-homogeneous polynomials in R2{\mathbb R}^2. Finally, we provide lower estimates for the real polynomial Bohnenblust-Hille constant for polynomials in R2{\mathbb R}^2 of higher degrees.Comment: 16 page

    Supercyclicity of weighted composition operators on spaces of continuous functions

    Get PDF
    [EN] Our study is focused on the dynamics of weighted composition operators defined on a locally convex space E similar to. (C( X), tp) with X being a topological Hausdorff space containing at least two different points and such that the evaluations {dx : x. X} are linearly independent in E similar to. We prove, when X is compact and E is a Banach space containing a nowhere vanishing function, that a weighted composition operator Cw,. is never weakly supercyclic on E. We also prove that if the symbol. lies in the unit ball of A(D), then every weighted composition operator can never be tp-supercyclic neither on C( D) nor on the disc algebra A(D). Finally, we obtain Ansari-Bourdon type results and conditions on the spectrum for arbitrary weakly supercyclic operators, and we provide necessary conditions for a composition operator to be weakly supercyclic on the space of holomorphic functions defined in non necessarily simply connected planar domains. As a consequence, we show that no composition operator can be weakly supercyclic neither on the space of holomorphic functions on the punctured disc nor in the punctured plane.The authors are very thankful to the referee for his/her careful reading of the manuscript and his/her valuable comments and observations. The first and the second author were supported by MEC, MTM2016-76647-P. The third author was supported by MEC, MTM2016-75963-P and GVA/2018/110.Beltrán-Meneu, MJ.; Jorda Mora, E.; Murillo Arcila, M. (2020). Supercyclicity of weighted composition operators on spaces of continuous functions. Collectanea mathematica. 71(3):493-509. https://doi.org/10.1007/s13348-019-00274-1493509713Albanese, A., Jornet, D.: A note on supercyclic operators in locally convex spaces. Mediterr. J. Math. 16, 107 (2019). https://doi.org/10.1007/s00009-019-1386-yAleman, A., Suciu, L.: On ergodic operator means in Banach spaces. Integr. Equ. Oper. Theory 85(2), 259–287 (2016)Ansari, S.: Hypercyclic and cyclic vectors. J. Funct. Anal. 128(2), 374–383 (1995)Ansari, S.I., Bourdon, P.S.: Some properties of cyclic operators. Acta Sci. Math. 63, 195–207 (1997)Bayart, F., Matheron, É.: Hyponormal operators, weighted shifts and weak forms of supercyclicity. Proc. Edinb. Math. Soc. 49, 1–15 (2006)Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge University Press, Cambridge (2009)Bermudo, S., Montes-Rodríguez, A., Shkarin, S.: Orbits of operators commuting with the Volterra operator. J. Math. Pures Appl. 89(2), 145–173 (2008)Bernal-Rodríguez, L., Montes-Rodríguez, A.: Universal functions for composition operators. Complex Var. Theory Appl. 27(1), 47–56 (1995)Bès, J.: Dynamics of weighted composition operators. Complex Anal. Oper. Theory 8, 159–176 (2014)Bonet, J., Peris, A.: Hypercyclic operators on non-normable Fréchet spaces. J. Funct. Anal. 159, 587–595 (1998)Bourdon, P.S., Shapiro, J.S.: Cyclic Phenomena for Composition Operators, Mem. Am. Math. Soc. 125 (1997), no. 596, Providence, Rhode IslandChan, K.C., Sanders, R.: A weakly hypercyclic operator that is not norm hypercyclic. J. Oper. Theory 52, 39–59 (2004)Duggal, B.P.: Weak supercyclicity: dynamics of paranormal operators. Rend. Circ. Mat. Palermo 65(2), 297–306 (2016)Fernández, C., Galbis, A., Jordá, E.: Dynamics and spectra of composition operators on the Schwartz space. J. Funct. Anal. 274(12), 3503–3530 (2018)Grosse-Erdmann, K.G., Mortini, R.: Universal functions for composition operators with non-automorphic symbol. J. Anal. Math. 107, 355–376 (2009)Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)Garling, D.J.H.: A Course in Mathematical Analysis: Volume III, Complex analysis, Measure and Integration. Cambridge University Press, New York (2013)Garrido, M.I., Jaramillo, J.A.: Variations on the Banach–Stone theorem. In: IV Course on Banach spaces and Operators (Laredo, 2001), Extracta Math. 17, 351–383 (2002)Gadgil, S.: Dynamics on the circle-interval dynamics and rotation number. Reson. J. Sci. Educ. 8(11), 25–36 (2003)Grosse-Erdmann, K.G., Peris, A.: Linear Chaos. Springer, Berlin (2011)Gunatillake, G.: Invertible weighted composition operators. J. Funct. Anal. 261, 831–860 (2011)Herrero, D.A.: Limits of hypercyclic and supercyclic operators. J. Funct. Anal. 99(1), 179–190 (1991)Hilden, H.M., Wallen, L.J.: Some cyclic and non-cyclic vectors of certain operators. Indiana Univ. Math. J. 23, 557–565 (1974)Kalmes, T.: Dynamics of weighted composition operators on function spaces defined by local properties. Studia Math. 249(3), 259–301 (2019)Kamali, Z., Hedayatian, K., Khani Robati, B.: Non-weakly supercyclic weighted composition operators. Abstr. Appl. Anal. Art. (2010) ID 143808Köthe, G.: Topological Vector Spaces II. Springer, New York (1979)Liang, Y.X., Zhou, Z.H.: Supercyclic tuples of the adjoint weighted composition operators on Hilbert spaces. Bull. Iran. Math. Soc. 41(1), 121–139 (2015)Milnor, J.: Dynamics in One Complex Variable, 3rd edn. Princeton University Press, Princeton (2006)Montes-Rodríguez, A., Rodríguez-Martínez, A., Shkarin, S.: Cyclic behaviour of Volterra composition operators. Proc. Lond. Math. Soc. 103(3), 535–562 (2011)Montes-Rodríguez, A., Shkarin, S.: Non-weakly supercyclic operators. J. Oper. Theory 58(1), 39–62 (2007)Moradi, A., Khani Robati, B., Hedayatian, K.: Non-weakly supercyclic classes of weighted composition operators on Banach spaces of analytic functions. Bull. Belg. Math. Soc. Simon Stevin 24(2), 227–241 (2017)Peris, A.: Multi-hypercyclic operators are hypercyclic. Math. Z. 236(4), 779–786 (2001)Sanders, R.: Weakly supercyclic operators. J. Math. Anal. Appl. 292, 148–159 (2004)Sanders, R.: An isometric bilateral shift that is weakly supercyclic. Integr. Equ. Oper. Theory 53, 547–552 (2005)Shapiro, J.H.: Composition Operators and Classical Function Theory. Universitext. Tracts in Mathematics. Springer, New York (1993)Shapiro, J.H.: Simple connectivity and linear chaos. Rend. Circ. Mat. Palermo (2) Suppl 56, 27–48 (1998)Shkarin, S.: Non-sequential weak supercyclicity and hypercyclicity. J. Funct. Anal. 242(1), 37–77 (2007)de Welington, M., van Strien, S.: One-Dimensional Dynamics. Springer, Berlin (1993)Yousefi, B., Rezaei, H.: Hypercyclic property of weighted composition operators. Proc. Am. Math. Soc. 135(10), 3263–3271 (2007

    Strong mixing measures for linear operators and frequent hypercyclicity

    Get PDF
    We construct strongly mixing invariant measures with full support for operators on F-spaces which satisfy the Frequent Hypercyclicity Criterion. For unilateral backward shifts on sequence spaces, a slight modification shows that one can even obtain exact invariant measures. (c) 2012 Elsevier Inc. All rights reserved.This work was supported in part by MEC and FEDER, Project MTM2010-14909, and by CV, Project PROMETEO/2008/101. The first author was also supported by a grant from the FPU Program of MEC. We thank the referee whose detailed report led to an improvement in the presentation of this work.Murillo Arcila, M.; Peris Manguillot, A. (2013). Strong mixing measures for linear operators and frequent hypercyclicity. Journal of Mathematical Analysis and Applications. 398(2):462-465. https://doi.org/10.1016/j.jmaa.2012.08.050S462465398

    Chaotic asymptotic behaviour of the solutions of the Lighthill Whitham Richards equation

    Full text link
    [EN] The phenomenon of chaos has been exhibited in mathematical nonlinear models that describe traffic flows, see, for instance (Li and Gao in Modern Phys Lett B 18(26-27):1395-1402, 2004; Li in Phys. D Nonlinear Phenom 207(1-2):41-51, 2005). At microscopic level, Devaney chaos and distributional chaos have been exhibited for some car-following models, such as the quick-thinking-driver model and the forward and backward control model (Barrachina et al. in 2015; Conejero et al. in Semigroup Forum, 2015). We present here the existence of chaos for the macroscopic model given by the Lighthill Whitham Richards equation.The authors are supported by MEC Project MTM2013-47093-P. The second and third authors are supported by GVA, Project PROMETEOII/2013/013Conejero, JA.; Martínez Jiménez, F.; Peris Manguillot, A.; Ródenas Escribá, FDA. (2016). Chaotic asymptotic behaviour of the solutions of the Lighthill Whitham Richards equation. Nonlinear Dynamics. 84(1):127-133. https://doi.org/10.1007/s11071-015-2245-4S127133841Albanese, A.A., Barrachina, X., Mangino, E.M., Peris, A.: Distributional chaos for strongly continuous semigroups of operators. Commun. Pure Appl. Anal. 12(5), 2069–2082 (2013)Aroza, J., Peris, A.: Chaotic behaviour of birth-and-death models with proliferation. J. Differ. Equ. Appl. 18(4), 647–655 (2012)Banasiak, J., Lachowicz, M.: Chaos for a class of linear kinetic models. C. R. Acad. Sci. Paris Sér. II 329, 439–444 (2001)Banasiak, J., Lachowicz, M.: Topological chaos for birth-and-death-type models with proliferation. Math. Models Methods Appl. Sci. 12(6), 755–775 (2002)Banasiak, J., Moszyński, M.: A generalization of Desch–Schappacher–Webb criteria for chaos. Discrete Contin. Dyn. Syst. 12(5), 959–972 (2005)Banasiak, J., Moszyński, M.: Dynamics of birth-and-death processes with proliferation—stability and chaos. Discrete Contin. Dyn. Syst. 29(1), 67–79 (2011)Barrachina, X., Conejero, J.A.: Devaney chaos and distributional chaos in the solution of certain partial differential equations. Abstr. Appl. Anal. Art. ID 457019, 11 (2012)Barrachina, X., Conejero, J.A., Murillo-Arcila, M., Seoane-Sepúlveda, J.B.: Distributional chaos for the forward and backward control traffic model (2015, preprint)Bayart, F., Matheron, É.: Dynamics of Linear Operators, Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009)Bayart, F., Matheron, É.: Mixing operators and small subsets of the circle. J Reine Angew. Math. (2015, to appear)Bermúdez, T., Bonilla, A., Conejero, J.A., Peris, A.: Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces. Stud. Math. 170(1), 57–75 (2005)Bermúdez, T., Bonilla, A., Martínez-Giménez, F., Peris, A.: Li-Yorke and distributionally chaotic operators. J. Math. Anal. Appl. 373(1), 83–93 (2011)Bernardes Jr, N.C., Bonilla, A., Müller, V., Peris, A.: Distributional chaos for linear operators. J. Funct. Anal. 265(9), 2143–2163 (2013)Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. Part F Traffic Psychol. Behav. 2(4), 181–196 (1999)Conejero, J.A., Lizama, C., Rodenas, F.: Chaotic behaviour of the solutions of the Moore–Gibson–Thompson equation. Appl. Math. Inf. Sci. 9(5), 1–6 (2015)Conejero, J.A., Mangino, E.M.: Hypercyclic semigroups generated by Ornstein-Uhlenbeck operators. Mediterr. J. Math. 7(1), 101–109 (2010)Conejero, J.A., Müller, V., Peris, A.: Hypercyclic behaviour of operators in a hypercyclic C0C_0 C 0 -semigroup. J. Funct. Anal. 244, 342–348 (2007)Conejero, J.A., Murillo-Arcila, M., Seoane-Sepúlveda, J.B.: Linear chaos for the quick-thinking-driver model. Semigroup Forum (2015). doi: 10.1007/s00233-015-9704-6Conejero, J.A., Peris, A., Trujillo, M.: Chaotic asymptotic behavior of the hyperbolic heat transfer equation solutions. Int. J. Bifur. Chaos Appl. Sci. Eng. 20(9), 2943–2947 (2010)Conejero, J.A., Rodenas, F., Trujillo, M.: Chaos for the hyperbolic bioheat equation. Discrete Contin. Dyn. Syst. 35(2), 653–668 (2015)Desch, W., Schappacher, W., Webb, G.F.: Hypercyclic and chaotic semigroups of linear operators. Ergod. Theory Dyn. Syst. 17(4), 793–819 (1997)Engel, K.-J., Nagel, R.: One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194. Springer, New York (2000). With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. SchnaubeltGrosse-Erdmann, K.-G., Peris Manguillot, A.: Linear Chaos. Universitext. Springer, London (2011)Herzog, G.: On a universality of the heat equation. Math. Nachr. 188, 169–171 (1997)Li, K., Gao, Z.: Nonlinear dynamics analysis of traffic time series. Modern Phys. Lett. B 18(26–27), 1395–1402 (2004)Li, T.: Nonlinear dynamics of traffic jams. Phys. D Nonlinear Phenom. 207(1–2), 41–51 (2005)Lustri, C.: Continuum Modelling of Traffic Flow. Special Topic Report. Oxford University, Oxford (2010)Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A. 229, 317–345 (1955)Maerivoet, S., De Moor, B.: Cellular automata models of road traffic. Phys. Rep. 419(1), 1–64 (2005)Mangino, E.M., Peris, A.: Frequently hypercyclic semigroups. Stud. Math. 202(3), 227–242 (2011)Murillo-Arcila, M., Peris, A.: Strong mixing measures for linear operators and frequent hypercyclicity. J. Math. Anal. Appl. 398, 462–465 (2013)Murillo-Arcila, M., Peris, A.: Strong mixing measures for C0C_0 C 0 -semigroups. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 109(1), 101–115 (2015)Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44. Springer, New York (1983)Protopopescu, V., Azmy, Y.Y.: Topological chaos for a class of linear models. Math. Models Methods Appl. Sci. 2(1), 79–90 (1992)Richards, P.I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956

    Linear chaos for the Quick-Thinking-Driver model

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00233-015-9704-6In recent years, the topic of car-following has experimented an increased importance in traffic engineering and safety research. This has become a very interesting topic because of the development of driverless cars (Google driverless cars, http://en.wikipedia.org/wiki/Google_driverless_car).Driving models which describe the interaction between adjacent vehicles in the same lane have a big interest in simulation modeling, such as the Quick-Thinking-Driver model. A non-linear version of it can be given using the logistic map, and then chaos appears. We show that an infinite-dimensional version of the linear model presents a chaotic behaviour using the same approach as for studying chaos of death models of cell growth.The authors were supported by a grant from the FPU program of MEC and MEC Project MTM2013-47093-P.Conejero, JA.; Murillo Arcila, M.; Seoane-Sepúlveda, JB. (2016). Linear chaos for the Quick-Thinking-Driver model. Semigroup Forum. 92(2):486-493. https://doi.org/10.1007/s00233-015-9704-6S486493922Aroza, J., Peris, A.: Chaotic behaviour of birth-and-death models with proliferation. J. Differ. Equ. Appl. 18(4), 647–655 (2012)Banasiak, J., Lachowicz, M.: Chaos for a class of linear kinetic models. C. R. Acad. Sci. Paris Série II 329, 439–444 (2001)Banasiak, J., Lachowicz, M.: Topological chaos for birth-and-death-type models with proliferation. Math. Models Methods Appl. Sci. 12(6), 755–775 (2002)Banasiak, J., Lachowicz, M., Moszyński, M.: Topological chaos: when topology meets medicine. Appl. Math. Lett. 16(3), 303–308 (2003)Banasiak, J., Moszyński, M.: A generalization of Desch–Schappacher–Webb criteria for chaos. Discret. Contin. Dyn. Syst. 12(5), 959–972 (2005)Banasiak, J., Moszyński, M.: Dynamics of birth-and-death processes with proliferation–stability and chaos. Discret. Contin. Dyn. Syst. 29(1), 67–79 (2011)Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Am. Math. Mon. 99(4), 332–334 (1992)Barrachina, X., Conejero, J.A.: Devaney chaos and distributional chaos in the solution of certain partial differential equations. Abstr. Appl. Anal. 457,019, 11 (2012)Bermúdez, T., Bonilla, A., Martínez-Giménez, F., Peris, A.: Li-Yorke and distributionally chaotic operators. J. Math. Anal. Appl. 373(1), 83–93 (2011)Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. Part F 2(4), 181–196 (1999)Brzeźniak, Z., Dawidowicz, A.L.: On periodic solutions to the von Foerster–Lasota equation. Semigroup Forum 78, 118–137 (2009)Chandler, R.E., Herman, R., Montroll, E.W.: Traffic dynamics: studies in car following. Op. Res. 6, 165–184 (1958)Chung, C.C., Gartner, N.: Acceleration noise as a measure of effectiveness in the operation of traffic control systems. Operations Research Center. Massachusetts Institute of Technology. Cambridge (1973)CNN (2014) Driverless car tech gets serious at CES. http://edition.cnn.com/2014/01/09/tech/innovation/self-driving-cars-ces/ . Accessed 7 Apr 2014Conejero, J.A., Rodenas, F., Trujillo, M.: Chaos for the hyperbolic bioheat equation. Discret. Contin. Dyn. Syst. 35(2), 653–668 (2015)DARPA Grand Challenge. http://en.wikipedia.org/wiki/2005_DARPA_Grand_Challenge#2005_Grand_Challengede Laubenfels, R., Emamirad, H., Protopopescu, V.: Linear chaos and approximation. J. Approx. Theory 105(1), 176–187 (2000)Desch, W., Schappacher, W., Webb, G.F.: Hypercyclic and chaotic semigroups of linear operators. Ergod. Theory Dyn. Syst. 17(4), 793–819 (1997)El Mourchid, S.: The imaginary point spectrum and hypercyclicity. Semigroup Forum 73(2), 313–316 (2006)El Mourchid, S., Metafune, G., Rhandi, A., Voigt, J.: On the chaotic behaviour of size structured cell populations. J. Math. Anal. Appl. 339(2), 918–924 (2008)El Mourchid, S., Rhandi, A., Vogt, H., Voigt, J.: A sharp condition for the chaotic behaviour of a size structured cell population. Differ. Integral Equ. 22(7–8), 797–800 (2009)Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York, 2000. With contributions by Brendle S., Campiti M., Hahn T., Metafune G., Nickel G., Pallara D., Perazzoli C., Rhandi A., Romanelli S., and Schnaubelt RGodefroy, G., Shapiro, J.H.: Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 98(2), 229–269 (1991)Greenshields, B.D.: The photographic method of studying traffic behavior. In: Proceedings of the 13th Annual Meeting of the Highway Research Board, pp. 382–399 (1934)Greenshields, B.D.: A study of traffic capacity. In: Proceedings of the 14th Annual Meeting of the Highway Research Board, pp. 448–477 (1935)Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear Chaos. Universitext. Springer, London (2011)Herman, R., Montroll, E.W., Potts, R.B., Rothery, R.W.: Traffic dynamics: analysis of stability in car following. Op. Res. 7, 86–106 (1959)Helly, W.: Simulation of Bottleneckes in Single-Lane Traffic Flow. Research Laboratories, General Motors. Elsevier, New York (1953)Li, T.: Nonlinear dynamics of traffic jams. Phys. D 207(1–2), 41–51 (2005)Lo, S.C., Cho, H.J.: Chaos and control of discrete dynamic traffic model. J. Franklin Inst. 342(7), 839–851 (2005)Martínez-Giménez, F., Oprocha, P., Peris, A.: Distributional chaos for backward shifts. J. Math. Anal. Appl. 351(2), 607–615 (2009)Pipes, L.A.: An operational analysis of traffic dynamics. J. Appl. Phys. 24, 274–281 (1953

    Well-posedness for degenerate third order equations with delay and applications to inverse problems

    Get PDF
    [EN] In this paper, we study well-posedness for the following third-order in time equation with delay <disp-formula idoperators defined on a Banach space X with domains D(A) and D(B) such that t)is the state function taking values in X and u(t): (-, 0] X defined as u(t)() = u(t+) for < 0 belongs to an appropriate phase space where F and G are bounded linear operators. Using operator-valued Fourier multiplier techniques we provide optimal conditions for well-posedness of equation (0.1) in periodic Lebesgue-Bochner spaces Lp(T,X), periodic Besov spaces Bp,qs(T,X) and periodic Triebel-Lizorkin spaces Fp,qs(T,X). A novel application to an inverse problem is given.The first, second and third authors have been supported by MEC, grant MTM2016-75963-P. The second author has been supported by AICO/2016/30. The fourth author has been supported by MEC, grant MTM2015-65825-P.Conejero, JA.; Lizama, C.; Murillo-Arcila, M.; Seoane Sepúlveda, JB. (2019). Well-posedness for degenerate third order equations with delay and applications to inverse problems. Israel Journal of Mathematics. 229(1):219-254. https://doi.org/10.1007/s11856-018-1796-8S2192542291K. Abbaoui and Y. Cherruault, New ideas for solving identification and optimal control problems related to biomedical systems, International Journal of Biomedical Computing 36 (1994), 181–186.M. Al Horani and A. Favini, Perturbation method for first- and complete second-order differential equations, Journal of Optimization Theory and Applications 166 (2015), 949–967.H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Mathematische Nachrichten 186 (1997), 5–56.U. A. Anufrieva, A degenerate Cauchy problem for a second-order equation. A wellposedness criterion, Differentsial’nye Uravneniya 34 (1998), 1131–1133; English translation: Differential Equations 34 (1999), 1135–1137.W. Arendt and S. Bu, The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, Mathematische Zeitschrift 240 (2002), 311–343.W. Arendt and S. Bu, Operator-valued Fourier multipliers on periodic Besov spaces and applications, Proceedings of the Edinburgh Mathematical Society 47 (2004), 15–33.W. Arendt, C. Batty and S. Bu, Fourier multipliers for Holder continuous functions and maximal regularity, Studia Mathematica 160 (2004), 23–51.V. Barbu and A. Favini, Periodic problems for degenerate differential equations, Rendiconti dell’Istituto di Matematica dell’Università di Trieste 28 (1996), 29–57.A. Bátkai and S. Piazzera, Semigroups for Delay Equations, Research Notes in Mathematics, Vol. 10, A K Peters, Wellesley, MA, 2005.S. Bu, Well-posedness of second order degenerate differential equations in vector-valued function spaces, Studia Mathematica 214 (2013), 1–16.S. Bu and G. Cai, Periodic solutions of third-order degenerate differential equations in vector-valued functional spaces, Israel Journal of Mathematics 212 (2016), 163–188.S. Bu and G. Cai, Well-posedness of second-order degenerate differential equations with finite delay in vector-valued function spaces, Pacific Journal of Mathematics 288 (2017), 27–46.S. Bu and Y. Fang, Periodic solutions of delay equations in Besov spaces and Triebel–Lizorkin spaces, Taiwanese Journal of Mathematics 13 (2009), 1063–1076.S. Bu and J. Kim, Operator-valued Fourier multipliers on periodic Triebel spaces, Acta Mathematica Sinica 21 (2005), 1049–1056.G. Cai and S. Bu, Well-posedness of second order degenerate integro-differential equations with infinite delay in vector-valued function spaces, Mathematische Nachrichten 289 (2016), 436–451.R. Chill and S. Srivastava, Lp-maximal regularity for second order Cauchy problems, Mathematische Zeitschrift 251 (2005), 751–781.R. Denk, M. Hieber and J. Prüss, R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Memoirs of the American Mathematical Society 166 (2003).O. Diekmann, S. A. van Giles, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations, Applied Mathematical Sciences, Vol. 110, Springer, New York, 1995.K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Vol. 194, Springer, New York, 2000.M. Fabrizio, A. Favini and G. Marinoschi, An optimal control problem for a singular system of solid liquid phase-transition, Numerical Functional Analysis and Optimization 31 (2010), 989–1022.A. Favini and G. Marinoschi, Periodic behavior for a degenerate fast diffusion equation, Journal of Mathematical Analysis and Applications 351 (2009), 509–521.A. Favini and G. Marinoschi, Identification of the time derivative coefficients in a fast diffusion degenerate equation, Journal of Optimization Theory and Applications 145 (2010), 249–269.A. Favini and A. Yagi, Degenerate differential equations in Banach spaces, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 215, Marcel Dekker, New York, 1999.X. L. Fu and M. Li, Maximal regularity of second-order evolution equations with infinite delay in Banach spaces, Studia Mathematica 224 (2014), 199–219.G. C. Gorain, Boundary stabilization of nonlinear vibrations of a flexible structure in a bounded domain in Rn, Journal of Mathematical Analysis and Applications 319 (2006), 635–650.P. Grisvard, Équations différentielles abstraites, Annales Scientifiques de l’école Normale Superieure 2 (1969), 311–395.J. K. Hale and W. Huang, Global geometry of the stable regions for two delay differential equations, Journal of Mathematical Analysis and Applications 178 (1993), 344–362.Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, Vol. 1473, Springer, Berlin, 1991.B. Kaltenbacher, I. Lasiecka and M. Pospieszalska, Well-posedness and exponential decay of the energy in the nonlinear Moore-Gibson-Thomson equation arising in high intensity ultrasound, Mathematical Models & Methods in Applied Sciences 22 (2012), 1250035.V. Keyantuo and C. Lizama, Fourier multipliers and integro-differential equations in Banach spaces, Journal of the London Mathematical Society 69 (2004), 737–750.V. Keyantuo and C. Lizama, Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces, Studia Mathematica 168 (2005), 25–50.V. Keyantuo, C. Lizama and V. Poblete, Periodic solutions of integro-differential euations in vector-valued function spaces, Journal of Differential Equations 246 (2009), 1007–1037.C. Lizama, Fourier multipliers and periodic solutions of delay equations in Banach spaces, Journal of Mathematical Analysis and Applications 324 (2006), 921–933.C. Lizama and V. Poblete, Maximal regularity of delay equations in Banach spaces, Studia Mathematica 175 (2006), 91–102.C. Lizama and R. Ponce, Periodic solutions of degenerate differential equations in vector valued function spaces, Studia Mathematica 202 (2011), 49–63.C. Lizama and R. Ponce, Maximal regularity for degenerate differential equations with infinite delay in periodic vector-valued function spaces, Proceedings of the Edinburgh Mathematical Society 56 (2013), 853–871.R. Marchand, T. Mcdevitt and R. Triggiani, An abstract semigroup approach to the third-order Moore–Gibson–Thompson partial differential equation arising in highintensity ultrasound: structural decomposition, spectral analysis, exponential stability, Mathematical Methods in the Applied Sciences 35 (2012), 1896–1929.V. Poblete, Solutions of second-order integro-differential equations on periodic Besov spaces, Proceedings of the Edinburgh Mathematical Society 50 (2007), 477–492.V. Poblete and J. C. Pozo, Periodic solutions of an abstract third-order differential equation, Studia Mathematica 215 (2013), 195–219.J. Prüss, Evolutionary Integral Equations and Applications, Monographs in Mathematics, Vol. 87, Birkhäuser, Heidelberg, 1993.G. A. Sviridyuk and V. E. Fedorov, Linear Sobolev type Equations and Degenerate Semigroups of Operators, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2003.L. Weis, Operator-valued Fourier multiplier theorems and maximal Lp-regularity, Mathematische Annalen 319 (2001), 735–758

    Distributionally chaotic families of operators on Fréchet spaces

    Get PDF
    This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Communications on Pure and Applied Analysis (CPAA) following peer review. The definitive publisher-authenticated version Conejero, J. A., Kostić, M., Miana, P. J., & Murillo-Arcila, M. (2016). Distributionally chaotic families of operators on Fréchet spaces.Communications on Pure and Applied Analysis, 2016, vol. 15, no 5, p. 1915-1939, is available online at: http://dx.doi.org/10.3934/cpaa.2016022The existence of distributional chaos and distributional irregular vectors has been recently considered in the study of linear dynamics of operators and C-0-semigroups. In this paper we extend some previous results on both notions to sequences of operators, C-0-semigroups, C-regularized semigroups, and alpha-timesintegrated semigroups on Frechet spaces. We also add a study of rescaled distributionally chaotic C-0-semigroups. Some examples are provided to illustrate all these results.The first and fourth authors are supported in part by MEC Project MTM2010-14909, MTM2013-47093-P, and Programa de Investigacion y Desarrollo de la UPV, Ref. SP20120700. The second author is partially supported by grant 174024 of Ministry of Science and Technological Development, Republic of Serbia. The third author has been partially supported by Project MTM2013-42105-P, DGI-FEDER, of the MCYTS; Project E-64, D.G. Aragon, and Project UZCUD2014-CIE-09, Universidad de Zaragoza. The fourth author is supported by a grant of the FPU Program of Ministry of education of Spain.Conejero, JA.; Kostic, M.; Miana Sanz, PJ.; Murillo Arcila, M. (2016). Distributionally chaotic families of operators on Fréchet spaces. Communications on Pure and Applied Analysis. 15(5):1915-1939. https://doi.org/10.3934/cpaa.2016022S1915193915

    Frequently Hypercyclic Translation Semigroups

    No full text
    Frequent hypercyclicity for translation C0C_0-semigroups on weighted spaces of continuous functions is studied. The results are achieved by establishing an analogy between frequent hypercyclicity for translation semigroups and for weighted pseudo-shifts and by characterizing frequently hypercyclic weighted pseudo-shifts on spaces of vanishing sequences. Frequently hypercyclic translation semigroups on weighted LpL^p-spaces are also characterized
    corecore