12 research outputs found

    Computer-assisted quantification of motile and invasive capabilities of cancer cells

    No full text
    High-throughput analysis of cancer cell dissemination and its control by extrinsic and intrinsic cellular factors is hampered by the lack of adequate and efficient analytical tools for quantifying cell motility. Oncology research would greatly benefit from such a methodology that allows to rapidly determine the motile behaviour of cancer cells under different environmental conditions, including inside three-dimensional matrices. We combined automated microscopy imaging of two- and three-dimensional cell cultures with computational image analysis into a single assay platform for studying cell dissemination in high-throughput. We have validated this new approach for medulloblastoma, a metastatic paediatric brain tumour, in combination with the activation of growth factor signalling pathways with established pro-migratory functions. The platform enabled the detection of primary tumour and patient-derived xenograft cell sensitivity to growth factor-dependent motility and dissemination and identified tumour subgroup-specific responses to selected growth factors of excellent diagnostic value

    ID3 contributes to cerebrospinal fluid seeding and poor prognosis in medulloblastoma

    No full text
    BACKGROUND: The inhibitor of differentiation (ID) genes have been implicated as promoters of tumor progression and metastasis in many human cancers. The current study investigated the expression and functional roles of ID genes in seeding and prognosis of medulloblastoma. METHODS: ID gene expression was screened in human medulloblastoma tissues. Knockdown of ID3 gene was performed in medulloblastoma cells in vitro. The expression of metastasis-related genes after ID3 knockdown was assessed. The effect of ID3 knockdown on tumor seeding was observed in an animal model in vivo. The survival of medulloblastoma patients was plotted according to the ID3 expression levels. RESULTS: Significantly higher ID3 expression was observed in medulloblastoma with cerebrospinal fluid seeding than tumors without seeding. Knockdown of ID3 decreased proliferation, increased apoptosis, and suppressed the migration of D283 medulloblastoma cells in vitro. In a seeding model of medulloblastoma, ID3 knockdown in vivo with shRNA inhibited the growth of primary tumors, prevented the development of leptomeningeal seeding, and prolonged animal survival. High ID3 expression was associated with shorter survival of medulloblastoma patients, especially in Group 4 medulloblastomas. CONCLUSIONS: High ID3 expression is associated with medullolbastoma seeding and is a poor prognostic factor, especially in patients with Group 4 tumors. ID3 may represent the metastatic/ aggressive phenotype of a subgroup of medulloblastoma

    PEDIATRICS LABORATORY RESEARCH

    No full text
    corecore