203 research outputs found

    Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium

    Get PDF
    New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determination of the melting temperature of competing solid phases, and Gibbs-Helmholtz integration, and a lattice-switch Monte Carlo method: these agree on the hcp-bcc transformation temperatures to within 2 K. We were able to develop embedded atom potentials which give a good fit to either low or high temperature data, but not both. The first developed potential (Ti1) reproduces the hcp-bcc transformation and melting temperatures and is suitable for the simulation of phase transitions and bcc Ti. Two other potentials (Ti2 and Ti3) correctly describe defect properties and can be used to simulate plasticity or radiation damage in hcp Ti. The fact that a single embedded atom method potential cannot describe both low and high temperature phases may be attributed to neglect of electronic degrees of freedom, notably bcc has a much higher electronic entropy. A temperature-dependent potential obtained from the combination of potentials Ti1 and Ti2 may be used to simulate Ti properties at any temperature.</p

    Microstructure and Velocity of Field-Driven SOS Interfaces: Analytic Approximations and Numerical Results

    Full text link
    The local structure of a solid-on-solid (SOS) interface in a two-dimensional kinetic Ising ferromagnet with single-spin-flip Glauber dynamics, which is driven far from equilibrium by an applied field, is studied by an analytic mean-field, nonlinear-response theory [P.A. Rikvold and M. Kolesik, J. Stat. Phys. 100, 377 (2000)] and by dynamic Monte Carlo simulations. The probability density of the height of an individual step in the surface is obtained, both analytically and by simulation. The width of the probability density is found to increase dramatically with the magnitude of the applied field, with close agreement between the theoretical predictions and the simulation results. Excellent agreement between theory and simulations is also found for the field-dependence and anisotropy of the interface velocity. The joint distribution of nearest-neighbor step heights is obtained by simulation. It shows increasing correlations with increasing field, similar to the skewness observed in other examples of growing surfaces.Comment: 18 pages RevTex4 with imbedded figure

    Solid-Liquid Phase Diagrams for Binary Metallic Alloys: Adjustable Interatomic Potentials

    Full text link
    We develop a new approach to determining LJ-EAM potentials for alloys and use these to determine the solid-liquid phase diagrams for binary metallic alloys using Kofke's Gibbs-Duhem integration technique combined with semigrand canonical Monte Carlo simulations. We demonstrate that it is possible to produce a wide-range of experimentally observed binary phase diagrams (with no intermetallic phases) by reference to the atomic sizes and cohesive energies of the two elemental materials. In some cases, it is useful to employ a single adjustable parameter to adjust the phase diagram (we provided a good choice for this free parameter). Next, we perform a systematic investigation of the effect of relative atomic sizes and cohesive energies of the elements on the binary phase diagrams. We then show that this approach leads to good agreement with several experimental binary phase diagrams. The main benefit of this approach is not the accurately reproduction of experimental phase diagrams, but rather to provide a method by which material properties can be continuously changed in simulations studies. This is one of the keys to the use of atomistic simulations to understand mechanisms and properties in a manner not available to experiment

    The MOLDY short-range molecular dynamics package

    Full text link
    We describe a parallelised version of the MOLDY molecular dynamics program. This Fortran code is aimed at systems which may be described by short-range potentials and specifically those which may be addressed with the embedded atom method. This includes a wide range of transition metals and alloys. MOLDY provides a range of options in terms of the molecular dynamics ensemble used and the boundary conditions which may be applied. A number of standard potentials are provided, and the modular structure of the code allows new potentials to be added easily. The code is parallelised using OpenMP and can therefore be run on shared memory systems, including modern multicore processors. Particular attention is paid to the updates required in the main force loop, where synchronisation is often required in OpenMP implementations of molecular dynamics. We examine the performance of the parallel code in detail and give some examples of applications to realistic problems, including the dynamic compression of copper and carbon migration in an iron-carbon alloy

    Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium

    Get PDF
    New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determination of the melting temperature of competing solid phases, and Gibbs-Helmholtz integration, and a lattice-switch Monte Carlo method: these agree on the hcp-bcc transformation temperatures to within 2 K. We were able to develop embedded atom potentials which give a good fit to either low or high temperature data, but not both. The first developed potential (Ti1) reproduces the hcp-bcc transformation and melting temperatures and is suitable for the simulation of phase transitions and bcc Ti. Two other potentials (Ti2 and Ti3) correctly describe defect properties and can be used to simulate plasticity or radiation damage in hcp Ti. The fact that a single embedded atom method potential cannot describe both low and high temperature phases may be attributed to neglect of electronic degrees of freedom, notably bcc has a much higher electronic entropy. A temperature-dependent potential obtained from the combination of potentials Ti1 and Ti2 may be used to simulate Ti properties at any temperature.</p
    • …
    corecore