30 research outputs found

    Integrated Assessment of Climate Change Impacts and Urban Resilience: From Climate and Hydrological Hazards to Risk Analysis and Measures

    Get PDF
    This Special Issue brings together recent research findings related to urban resilience, in particular taking into account climate change impacts and hydrological hazards. Taking advantage of the work done in the H2020 RESCCUE project, 12 different papers dealing with several issues related to the resilience of urban areas have been published. Due to the complexity of cities, urban resilience management is one of the key challenges that our societies have to deal with in the near future. In addition, urban resilience is a transversal and multi-sectorial issue, affecting different urban services, several hazards, and all the steps of the risk management cycle. This is precisely why the papers contained in this Special Issue focus on varied subjects, such as impact assessments, urban resilience assessments, adaptation strategies, flood risk and urban services, always focusing on at least two of these topics

    Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye

    Get PDF
    Background: Saccharomyces cerevisiae multicellular communities are sustained by a scaffolding extracellular matrix, which provides spatial organization, and nutrient and water availability, and ensures group survival. According to this tissue-like biology, the yeast extracellular matrix (yECM) is analogous to the higher Eukaryotes counterpart for its polysaccharide and proteinaceous nature. Few works focused on yeast biofilms, identifying the flocculin Flo11 and several members of the HSP70 in the extracellular space. Molecular composition of the yECM, is therefore mostly unknown. The homologue of yeast Gup1 protein in high Eukaryotes (HHATL) acts as a regulator of Hedgehog signal secretion, therefore interfering in morphogenesis and cell-cell communication through the ECM, which mediates but is also regulated by this signalling pathway. In yeast, the deletion of GUP1 was associated with a vast number of diverse phenotypes including the cellular differentiation that accompanies biofilm formation. Methods: S. cerevisiae W303-1A wt strain and gup1Δ mutant were used as previously described to generate biofilmlike mats in YPDa from which the yECM proteome was extracted. The proteome from extracellular medium from batch liquid growing cultures was used as control for yECM-only secreted proteins. Proteins were separated by SDS-PAGE and 2DE. Identification was performed by HPLC, LC-MS/MS and MALDI-TOF/TOF. The protein expression comparison between the two strains was done by DIGE, and analysed by DeCyder Extended Data Analysis that included Principal Component Analysis and Hierarchical Cluster Analysis. Results: The proteome of S. cerevisiae yECM from biofilm-like mats was purified and analysed by Nano LC-MS/MS, 2D Difference Gel Electrophoresis (DIGE), and MALDI-TOF/TOF. Two strains were compared, wild type and the mutant defective in GUP1. As controls for the identification of the yECM-only proteins, the proteome from liquid batch cultures was also identified. Proteins were grouped into distinct functional classes, mostly Metabolism, Protein Fate/Remodelling and Cell Rescue and Defence mechanisms, standing out the presence of heat shock chaperones, metalloproteinases, broad signalling cross-talkers and other putative signalling proteins. The data has been deposited to the ProteomeXchange with identifier PXD001133.Conclusions: yECM, as the mammalian counterpart, emerges as highly proteinaceous. As in higher Eukaryotes ECM, numerous proteins that could allow dynamic remodelling, and signalling events to occur in/and via yECM were identified. Importantly, large sets of enzymes encompassing full antagonistic metabolic pathways, suggest that mats develop into two metabolically distinct populations, suggesting that either extensive moonlighting or actual metabolism occurs extracellularly. The gup1Δ showed abnormally loose ECM texture. Accordingly, the correspondent differences in proteome unveiled acetic and citric acid producing enzymes as putative players in structural integrity maintenance.This work was funded by the Marie Curie Initial Training Network GLYCOPHARM (PITN-GA-2012-317297), and by national funds from FCT I.P. through the strategic funding UID/BIA/04050/2013. Fábio Faria-Oliveira was supported by a PhD scholarship (SFRH/BD/45368/2008) from FCT (Fundação para a Ciência e a Tecnologia). We thank David Caceres and Montserrat MartinezGomariz from the Unidad de Proteómica, Universidad Complutense de Madrid – Parque Científico de Madrid, Spain for excellent technical assistance in the successful implementation of all proteomics procedures including peptide identification, and Joana Tulha from the CBMA, Universidade do Minho, Portugal, for helping with the SDS-PAGE experiments, and the tedious and laborious ECM extraction procedures. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium, via the PRIDE partner repository, with the dataset identifier PXD001133. We would like to thank the PRIDE team for all the help and support during the submission process.info:eu-repo/semantics/publishedVersio

    Anti-inflammatory role in septic shock of pituitary adenylate cyclase-activating polypeptide receptor

    No full text
    Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are two mediators synthesized by immune cells, specially under inflammatory and antigen stimulation conditions. Reports have shown that neuropeptides attenuate the deleterious consequences of septic shock both by down-regulating the production of proinflammatory mediators and by stimulating the production of anti-inflammatory cytokines by activated macrophages. In this study, we used a knockout for the PACAP receptor (PAC1(−/−)) to demonstrate an important protective role for PAC1 receptor in endotoxic shock. Moreover, our results indicate that PAC1 receptor acts in vivo as an anti-inflammatory receptor, at least in part, by attenuating lipopolysaccharide (LPS)-induced production of proinflammatory IL-6, which appears to be the main cytokine regulating the expression of the majority of the acute phase protein genes, which are an important deleterious component of septic shock. Besides, our findings point to endogenously produced VIP and PACAP as participants of the natural anti-inflammatory machinery. Because VIP and PACAP are two attractive candidates for the development of therapies against acute and chronic inflammatory diseases, septic shock, and autoimmune diseases, this paper represents a contribution to the understanding of the mechanism of action of these anti-inflammatory agents

    VIP and tolerance induction in autoimmunity

    Get PDF
    Vasoactive intestinal peptide (VIP) is a potent antiinflammatory agent with immunoregulatory properties, skewing the immune response to a Th2 pattern of cytokine production. Here, we studied the effect of treatment with VIP in the development of diabetes in nonobese diabetic (NOD) mice, an annual model of type 1 diabetes. Mice treated with VIP from 4 weeks of age did not develop diabetes and showed milder insulitis than nontreated mice. The protective mechanism of VIP was associated with a reduction in the circulating levels of Th1 cytokines. In the pancreas of VIP-treated animals, regulatory T cell markers predominate, as indicated by the upregulation of FoxP3 and transforming growth factor-β (TGF-β), and the downregulation of the transcription factor, T-bet. These findings indicate that VIP restores tolerance to pancreatic islets by promoting the local differentiation and function of regulatory T cells.Fil: Rosignoli, F.. Universidad Complutense de Madrid; EspañaFil: Torroba, M.. Universidad Complutense de Madrid; EspañaFil: Juarranz, Y.. Universidad Complutense de Madrid; EspañaFil: García Gómez, M.. Universidad Complutense de Madrid; EspañaFil: Martinez, C.. Universidad Complutense de Madrid; EspañaFil: Gomariz, R. P.. Universidad Complutense de Madrid; EspañaFil: Perez Leiros, Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Leceta, J.. Universidad Complutense de Madrid; Españ

    Prokaryotic and viral community structure in the singular chaotropic salt lake Salar de Uyuni

    Get PDF
    Salar de Uyuni (SdU) is the largest hypersaline salt flat and the highest lithium reservoir on Earth. In addition to extreme temperatures and high UV irradiance, SdU has high concentrations of chaotropic salts which can be important factors in controlling microbial diversity. Here, for the first time we characterize the viral diversity of this hypersaline environment during the two seasons, as well as the physicochemical characteristics and the prokaryotic communities of the analysed samples. Most of the selected samples showed a peculiar physicochemical composition and prokaryotic diversity, mostly different from each other even for samples from locations in close proximity or the same season. In contrast to most hypersaline systems Bacteria frequently outnumbered Archaea. Furthermore, an outstanding percentage of members of Salinibacter sp., likely a species different from the cosmopolitan Salinibacter ruber, was obtained in most of the samples. Viral communities displayed the morphologies normally found in hypersaline environments. Two seasonal samples were chosen for a detailed metagenomic analysis of the viral assemblage. Both viral communities shared common sequences but were dominated by sample‐specific viruses, mirroring the differences also observed in physicochemical and prokaryotic community composition. These metaviromes were distinct from those detected in other hypersaline systems analysed to date.This research was supported by the MINECO projects CLG2015_66686-C3-3 (to JA) and CGL2015-66242-R (to RA), which were also supported with European Regional Development Fund (FEDER) funds
    corecore