801 research outputs found

    The Quantification of Intelligence in Nineteenth‑Century Craniology: An Epistemology of Measurement Perspective

    Get PDF
    Craniology – the practice of inferring intelligence differences from the measurementof human skulls – survived the dismissal of phrenology and remained a widely popularresearch program until the end of the nineteenth century. From the 1970s, historiansand sociologists of science extensively focused on the explicit and implicitsocio-cultural biases invalidating the evidence and claims that craniology produced.Building on this literature, I reassess the history of craniological practice from adifferent but complementary perspective that relies on recent developments in theepistemology of measurement. More precisely, I identify two aspects of the measurementculture of nineteenth-century craniologists that are crucial to understandthe lack of validity of craniological inference: their neglect of the problem of coordinationfor their presupposed quantification of intelligence and their narrow viewof calibration. Based on my analysis, I claim that these methodological shortcomingsamplified the impact of the socio-cultural biases of craniologists, which had apervasive role in their evidential use of measurement. Finally, my argument showshow the epistemology of measurement perspective can offer useful tools in debatesconcerning the use of biological evidence to foster social discourse and for analyzingthe relationship between theory, evidence, and measurement

    Coordination in Theory Extension: How Reichenbach Can Help Us Understand Endogenization in Evolutionary Biology

    Get PDF

    Early handling and repeated cross-fostering have opposite effect on mouse emotionality

    Get PDF
    Early life events have a crucial role in programming the individual phenotype and exposure to traumatic experiences during infancy can increase later risk for a variety of neuropsychiatric conditions, including mood and anxiety disorders. Animal models of postnatal stress have been developed in rodents to explore molecular mechanisms responsible for the observed short and long lasting neurobiological effects of such manipulations. The main aim of this study was to compare the behavioral and hormonal phenotype of young and adult animals exposed to different postnatal treatments. Outbred mice were exposed to (i) the classical Handling protocol (H: 15 min-day of separation from the mother from day 1 to 14 of life) or to (ii) a Repeated Cross-Fostering protocol (RCF: adoption of litters from day 1 to 4 of life by different dams). Handled mice received more maternal care in infancy and showed the already described reduced emotionality at adulthood. Repeated cross fostered animals did not differ for maternal care received, but showed enhanced sensitivity to separation from the mother in infancy and altered respiratory response to 6% CO2 in breathing air in comparison with controls. Abnormal respiratory responses to hypercapnia are commonly found among humans with panic disorders (PD), and point to RCF-induced instability of the early environment as a valid developmental model for PD. The comparisons between short-and long-term effects of postnatal handling vs. RCF indicate that different types of early adversities are associated with different behavioral profiles, and evoke psychopathologies that can be distinguished according to the neurobiological systems disrupted by early-life manipulation

    Body measurement estimations using 3D scanner for individuals with severe motor impairments

    Get PDF
    In biomechanics, a still unresolved question is how to estimate with enough accuracy the volume and mass of each body segment of a subject. This is important for several applications ranging from the rehabilitation of injured subjects to the study of athletic performances via the analysis of the dynamic inertia of each body segment. However, traditionally this evaluation is done by referring to anthropometric tables or by approximating the volumes using manual measurements. We propose a novel method based on the 3D reconstruction of the subject’s body using the commercial low-cost camera Kinect v2. The software developed performs body segment separation in a few minutes leveraging alpha shape approximation of 3D polyhedrons to quickly compute a Montecarlo volume estimation. The procedure was evaluated on a total of 30 healthy subjects and the resulting segments’ lengths and masses were compared with the literature

    Experimental Procedure for the Metrological Characterization of Time-of-Flight Cameras for Human Body 3D Measurements

    Get PDF
    Time-of-flight cameras are widely adopted in a variety of indoor applications ranging from industrial object measurement to human activity recognition. However, the available products may differ in terms of the quality of the acquired point cloud, and the datasheet provided by the constructors may not be enough to guide researchers in the choice of the perfect device for their application. Hence, this work details the experimental procedure to assess time-of-flight cameras' error sources that should be considered when designing an application involving time-of-flight technology, such as the bias correction and the temperature influence on the point cloud stability. This is the first step towards a standardization of the metrological characterization procedure that could ensure the robustness and comparability of the results among tests and different devices. The procedure was conducted on Kinect Azure, Basler Blaze 101, and Basler ToF 640 cameras. Moreover, we compared the devices in the task of 3D reconstruction following a procedure involving the measure of both an object and a human upper-body-shaped mannequin. The experiment highlighted that, despite the results of the previously conducted metrological characterization, some devices showed evident difficulties in reconstructing the target objects. Thus, we proved that performing a rigorous evaluation procedure similar to the one proposed in this paper is always necessary when choosing the right device

    Monte Carlo-based 3D surface point cloud volume estimation by exploding local cubes faces

    Get PDF
    This article proposes a state-of-the-art algorithm for estimating the 3D volume enclosed in a surface point cloud via a modified extension of the Monte Carlo integration approach. The algorithm consists of a pre-processing of the surface point cloud, a sequential generation of points managed by an affiliation criterion, and the final computation of the volume. The pre-processing phase allows a spatial reorientation of the original point cloud, the evaluation of the homogeneity of its points distribution, and its enclosure inside a rectangular parallelepiped of known volume. The affiliation criterion using the explosion of cube faces is the core of the algorithm, handles the sequential generation of points, and proposes the effective extension of the traditional Monte Carlo method by introducing its applicability to the discrete domains. Finally, the final computation estimates the volume as a function of the total amount of generated points, the portion enclosed within the surface point cloud, and the parallelepiped volume. The developed method proves to be accurate with surface point clouds of both convex and concave solids reporting an average percentage error of less than 7 %. It also shows considerable versatility in handling clouds with sparse, homogeneous, and sometimes even missing points distributions. A performance analysis is presented by testing the algorithm on both surface point clouds obtained from meshes of virtual objects as well as from real objects reconstructed using reverse engineering techniques

    Ethical issues associated with in-hospital emergency from the medical emergency team's perspective: a national survey

    Get PDF
    Medical Emergency Teams (METs) are frequently involved in ethical issues associated to in-hospital emergencies, like decisions about end-of-life care and intensive care unit (ICU) admission. MET involvement offers both advantages and disadvantages, especially when an immediate decision must be made. We performed a survey among Italian intensivists/anesthesiologists evaluating MET's perspective on the most relevant ethical aspects faced in daily practice

    Endothelial cells, endoplasmic reticulum stress and oxysterols

    Get PDF
    Oxysterols are bioactive lipids that act as regulators of lipid metabolism, inflammation, cell viability and are involved in several diseases, including atherosclerosis. Mounting evidence linked the atherosclerosis to endothelium dysfunction; in fact, the endothelium regulates the vascular system with roles in processes such as hemostasis, cell cholesterol, hormone trafficking, signal transduction and inflammation. Several papers shed light the ability of oxysterols to induce apoptosis in different cell lines including endothelial cells. Apoptotic endothelial cell and endothelial denudation may constitute a critical step in the transition to plaque erosion and vessel thrombosis, so preventing the endothelial damaged has garnered considerable attention as a novel means of treating atherosclerosis. Endoplasmic reticulum (ER) is the site where the proteins are synthetized and folded and is necessary for most cellular activity; perturbations of ER homeostasis leads to a condition known as endoplasmic reticulum stress. This condition evokes the unfolded protein response (UPR) an adaptive pathway that aims to restore ER homeostasis. Mounting evidence suggests that chronic activation of UPR leads to cell dysfunction and death and recently has been implicated in pathogenesis of endothelial dysfunction. Autophagy is an essential catabolic mechanism that delivers misfolded proteins and damaged organelles to the lysosome for degradation, maintaining basal levels of autophagic activity it is critical for cell survival. Several evidence suggests that persistent ER stress often results in stimulation of autophagic activities, likely as a compensatory mechanism to relieve ER stress and consequently cell death. In this review, we summarize evidence for the effect of oxysterols on endothelial cells, especially focusing on oxysterols-mediated induction of endoplasmic reticulum stress

    A new trans-Ionian spider species for the Italian fauna: Habrocestum graecum Dalmas, 1920 (Araneae, Salticidae)

    Get PDF
    The salticid spider Habrocestum graecum Dalmas, 1920, until now only known from Greece, is for the first time recorded in Italy. Observations on ecology and behavior are also reported and pictures of its habitus and genitalia are provided. Furthermore, the first DNA barcode sequence for H. graecum is produced and made publicly available. The species has been observed in Puglia, in South-Eastern Italy, and a trans-Ionian dispersal pattern is most likely the cause of its presence both in Greece and Southern Italy, as reported for other taxa with similar distribution in different animal groups

    c-myb Proto-Oncogene Is Expressed by Quiescent Scleroderma Fibroblasts and, Unlike B-myb Gene, Does Not Correlate With Proliferation

    Get PDF
    Systemic sclerosis (scleroderma) is characterized by excessive deposition of extracellular matrix constituents. Although it has been proposed that tissue fibrosis is due to increased fibroblast synthesis of various collagen polypeptides, there is some experimental evidence that patients with systemic sclerosis have a defect in the control of fibroblast growth. The myb family of genes includes, among others, the c-myb proto-oncogene and the structurally related gene, B-myb, which are both implicated in the regulation of differentiation and/or proliferation of hematopoietic and nonhematopoietic cells. To elucidate the molecular basis responsible for scleroderma fibroblast proliferation, we therefore elected to investigate the expression of c-myb and B-myb genes in scleroderma and control cells. Using the reverse transcriptase polymerase chain reaction technique, we detected c-myb transcripts in scleroderma skin fibroblasts rendered quiescent by serum deprivation. Under the game experimental conditions, c-myb message was not found in normal skin fibroblasts, but, after serum stimulation, c-myb RNA was clearly evident from 3 to 72h in both normal and pathologic cells. Treatment of these cells with c-myb antisense oligonucleotides caused downregulation of c-myb expression, and the inhibition of scleroderma fibroblast proliferation was 42%, whereas in normal fibroblasts the inhibition was weaker (22%). In contrast to c-myb, in normal and scleroderma fibroblasts the level of expression of B-myb correlated with cell proliferation assessed by cell count, and densitometric analysis showed that B-myb message was 1.5–5 times higher in most of pathologic cells studied. The antisense B-myb oligonucleotides had a weaker antiproliferative effect compared with antisense c-myb, inhibiting scleroderma and normal fibroblasts by 23% and 13%, respectively. These data suggest that the B-myb and c-myb genes may play a role in scleroderma fibroblast proliferation and function
    • …
    corecore