25 research outputs found

    Dietary fatty acid composition alters 11β-hydroxysteroid dehydrogenase type 1 gene expression in rat retroperitoneal white adipose tissue

    Get PDF
    The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) amplifies intracellular glucocorticoid action by converting inactive glucocorticoids to their active forms in vivo. Adipose-specific overexpression of 11β-HSD1 induces metabolic syndrome in mice, whereas 11β-HSD1 null mice are resistant to it. Dietary trans and saturated fatty acids (TFAs and SFAs) are involved in the development of metabolic syndrome, whereas polyunsaturated fatty acids (PUFA) offer protection against this. Here, we report the effects of chronic feeding of different diets containing vanaspati (TFA rich), palm oil (SFA rich) and sunflower oil (PUFA rich) at 10%level on 11β-HSD1 gene expression in rat retroperitoneal adipose tissue. 11β-HSD1 gene expression was significantly higher in TFA rich diet-fed rats compared to SFA rich diet-fed rats, which in turn was significantly higher than PUFA rich diet-fed rats. Similar trend was observed in the expression of CCAAT-enhancer binding protein-α (C/EBP-α), the main transcription factor required for the expression of 11β-HSD1. We propose that TFAs and SFAs increase local amplification of glucocorticoid action in adipose tissue by upregulating 11β-HSD1 by altering C/EBP-α-gene expression. The increased levels of glucocorticoids in adipose tissue may lead to development of obesity and insulin resistance, thereby increasing the risk of developing metabolic syndrome

    Consuming Fat Supplemented Diet with Different Vegetable Oils Impacts the Serum Lipid Profiles and Body Weights of Male Rats

    Get PDF
    This research was conducted in order to evaluate the influence of consuming diet supplemented with different types of fixed oils (Olive oil, Soybean oil and Coconut oil) on the lipid profiles and body weights of healthy albino rats and linking these effects to their chemical compositions thus reaching out to recommendation about the healthiest type of fats among the studied oils to be used in healthy nutrition programs. The lipid contents of the fixed oils were determined by Gas Chromatography (GC) method, the vitamin contents were determined by High Performance Liquid Chromatography (HPLC) and the proximate analyses of the oils were also evaluated by different assays. Twenty-four healthy male albino rats were divided into four groups as follows: Olive oil supplemented diet, Soybean oil supplemented diet, Coconut oil supplemented diet and oil-free supplemented diet control group. The dieting continued for 28 days, at the end of which, the serum levels of total cholesterol, Low Density Lipoproteins (LDL), High Density Lipoproteins (HDL), Triglycerides (TG) and Free Fatty Acid (FFA) were measured spectrophotometrically and the rats body weights were monitored on daily basis. The results showed that olive oil, the richest studied oil in unsaturated fatty acids (84.16 %), had favorable effect on the rats’ lipid profiles, serum free fatty acid levels and rats body weights. In conclusion, olive oil supplemented diets are considered healthy diets and beneficial to decrease the risk of cardiovascular diseases

    Experimental Characterization Of The Weakly Anisotropic CN X(2)Σ(+) + Ne Potential From IR-UV Double Resonance Studies Of The CN-Ne Complex

    Get PDF
    IR-UV double resonance spectroscopy has been used to characterize hindered internal rotor states (n(K) = 0(0), 1(1), and 1(0)) of the CN-Ne complex in its ground electronic state with various degrees of CN stretch (nu(CN)) excitation. Rotationally resolved infrared overtone spectra of the CN-Ne complex exhibit perturbations arising from Coriolis coupling between the closely spaced hindered rotor states (1(1) and 1(0)) with two quanta of CN stretch (nu(CN) = 2). A deperturbation analysis is used to obtain accurate rotational constants and associated average CN center-of-mass to Ne separation distances as well as the coupling strength. The energetic ordering and spacings of the hindered internal rotor states provide a direct reflection of the weakly anisotropic intermolecular potential between CN X-2 Sigma(+) and Ne, with only an 8 cm(-1) barrier to CN internal rotation, from which radially averaged anisotropy parameters (V-10 and V-20) are extracted that are consistent for nu(CN) = 0-3. Complementary ab initio calculation of the CN X-2 Sigma(+) + Ne potential using MRCI+Q extrapolated to the complete one-electron basis set limit is compared with the experimentally derived anisotropy by optimizing the radial potential at each angle. Experiment and theory are in excellent accord, both indicating a bent minimum energy configuration and nearly free rotor behavior. Analogous experimental and theoretical studies of the CN-Ne complex upon electronic excitation to the CN B (2)Sigma(+) state indicate a slightly more anisotropic potential with a linear CN-Ne minimum energy configuration. The results from these IR-UV double resonance studies are compared with prior electronic spectroscopy and theoretical studies of the CN-Ne system. (c) 2011 American Institute of Physics. [doi: 10.1063/1.3586810

    Studies of rotationally inelastic collisions in argon + hydrogen fluoride

    Get PDF
    In this dissertation we examine rotationally inelastic collisions involving an atom plus a diatom. We concentrate specifically on the Ar + HF system. In these investigations we employ a number of theoretical methods, including classical trajectories, quantum close-coupled calculations and semiclassical methods, to examine the differential cross sections in Ar + HF. We also investigate the effects of various sudden approximations on the scattering dynamics and the limitations of these approximations. Through this work we were able to identify a new quantum feature in rotationally inelastic scattering. By studying the time evolution of transition amplitudes (rather than probabilities) we are able to ascribe this feature to a balance between the attractive and repulsive parts of the potential energy surface governing the collision system. We propose that this feature will be a general scattering feature in systems with a potential that has substantial repulsive anisotropy and a significant attractive well. We present a classical trajectory method for direct simulation of a scattering experiment. We use this method to calculate laboratory frame differential cross sections for rotationally inelastic scattering in the Ar + HF system. We find that the results of this method are in excellent agreement with more standard approaches for the comparison of theoretical to experimental results

    IR-UV Spectroscopic Studies of OH and CN Radical Complexes

    Get PDF
    Infrared action spectroscopy is used to identify the OH-HONO2 complex, an intermediate proposed to be important in the reaction of OH with HONO2. Two features are observed in the OH stretching region: a rotationally structured band corresponding to the OH radical stretch and a broadened feature assigned to the OH stretch of HONO2. Assignments are based on vibrational frequencies, analysis of rotational structure, and comparison with ab initio calculations. Nascent OH product state distributions give a binding energy of ≤5.3 kcal mol-1. Infrared action spectroscopy is also used to examine the H2O-HO complex, a primary interaction in the hydration of OH. A rotationally structured band is assigned to the OH radical stretch of H2O-HO. The stability of the complex, ≤5.14 kcal mol-1, is derived from the nascent OH product state distribution. The assignment is supported by ab initio predictions of the spectral shift and dissociation energy. A second feature to lower frequency is attributed to a hot band from an H2O bending state based on theoretical modeling. IR-UV double resonance spectroscopy is used to characterize hindered rotor states in the ground electronic state of CN-Ne and CN-Ar. Infrared spectra exhibit perturbations due to Coriolis coupling: a deperturbation analysis gives rotational constants and coupling strengths. The energetic ordering and spacings of the hindered rotor states provide a probe of the anisotropic intermolecular potential, which is compared with ab initio calculations. The CN monomer is nearly free rotor-like within both complexes. A similar approach yields the infrared spectrum of H2-CN, which exhibits rotational structure consistent with ortho-H2-CN in a linear C≡N-H-H configuration. Lastly, laser-induced fluorescence and IR-UV fluorescence depletion studies are used to characterize the lowest intermolecular levels of CN-Ar correlating with CN B 2Σ+ + Ar. Fluorescence depletion spectra confirm that specific features originate from a common ground state. The observed energy level pattern and intensity profile reflect the change in configuration from a weakly anisotropic potential about linear N≡C-Ar in the ground state to linear C≡N-Ar in the excited electronic state

    The Sidney Review Wed, May 30, 1973

    Get PDF

    Quantum mechanics of Van der Waals complexes: rare gas-hydrocarbon systems

    Get PDF
    The coupled channel approach has been used to study the Van der Waals complexes Ar-C(_2)H(_2), Ar-CH(_4) and Ar-C(_2)H(_4). The Ar-C(_2)H(_2) study employs a pairwise additive, atom-atom potential energy surface first without, and then with, angular anisotropy in some of the carbon atom parameters. The complex is found to be a nearly free internal rotor and the correlation between the complex and the acetylene monomer energy levels is clear. The Ar-CH(_4) study uses two potentials. The first includes the isotropic V(_o) dependence and the first angularly anisotropic V(_3) term. This is then modified to give a second potential which includes a V(_4) term as well. The role of these anisotropic terms in splitting the triply degenerate bending states of the complex, when the methane monomer is in the ground vibrational state, is discussed. The energy level pattern is found to be best described in terms of a hindered rotor model. For Ar-C(_2)H(_4) a pairwise additive, atom-atom potential including angular anisotropy in the carbon atom parameters is again used. The ethylene monomer in the complex is nearly free to rotate about the C-C axis but steric considerations make end-over-end rotation restricted. A method has been implemented to extract wavefunctions from coupled channel calculations. The utility of this technique has been illustrated by providing insights into the Ar-HF, He-CO(_2) and Ar-C(_2)H(_4) systems via calculated spectra and direct visualisation of the wavefunctions
    corecore